Estudo Geomecânico do Túnel do Cortado na Ilha da Madeira

DISSERTAÇÃO DE MESTRADO

Amaro José Sousa Chaves Cró

MESTRADO EM ENGENHARIA CIVIL
Estudo Geomecânico do Túnel do Cortado na Ilha da Madeira

DISSERTAÇÃO DE MESTRADO

Amaro José Sousa Chaves Cró

MESTRADO EM ENGENHARIA CIVIL

ORIENTADOR
João Paulo Martins da Silva Lobo

CO-ORIENTADOR
Tiago Filipe da Silva Miranda
Aos meus pais
e ao meu irmão
“A ciência nunca resolve um problema sem criar pelo menos outros dez”.
George Bernard Shaw
AGRADECIMENTOS

A realização deste trabalho marca o culminar de um percurso de formação e aprendizagem, o qual não teria sido possível sem o apoio de muitas pessoas pelas quais passo a expressar o meu profundo agradecimento:

Ao meu orientador, o Professor Doutor João Martins, pela disponibilidade demonstrada, pelos preciosos e vastos conhecimentos que me transmitiu, pelo incentivo e apoio ao longo de vários meses e pela sua orientação que contribuiu para o sucesso deste trabalho.

Ao meu coorientador, o Professor Doutor Tiago Miranda, pela disponibilidade demonstrada e pelo valioso auxílio e orientação nas questões mais técnicas que contribuíram no enriquecimento do meu trabalho.

À Direção Regional de Estradas, na pessoa do Sr. Eng.º António Ferreira e do Sr. Eng.º Francisco Taboada, pela disponibilidade e apoio prestado no processo de recolha de dados que permitiram a realização deste trabalho.

À empresa CENORGEO – Engenharia Geotécnica, Lda, na pessoa da Sr.ª Eng.ª Vitória Rodrigues, pela disponibilidade e pelos dados facultados que enriqueceram este trabalho.

À empresa CONSULGAL – Consultores de Engenharia e Gestão, SA, na pessoa do Sr. Eng.º Serras Pires e do Sr. Eng.º Paulo Freixo, pela disponibilidade em responder a algumas dúvidas relativas à obra do Túnel do Cortado e pela prontidão com que facultaram dados necessários à realização deste trabalho.

À empresa EPOS – Empresa Portuguesa de Obras Subterrâneas S.A, na pessoa do Sr. Eng.º Luís Santos, por ter disponibilizado alguns dados que detinham sobre a realização da obra do Túnel do Cortado.

Aos meus pais, pelos esforços e sacrifícios que fizeram por me dar a melhor educação, pelo apoio constante, paciência e compreensão.

Ao meu irmão e meu melhor amigo, à Tânia e ao Tozé, pelos bons conselhos, pela força e apoio que sempre me transmitiram.
Aos meus amigos que participaram desta caminhada a meu lado e a todos aqueles que acreditaram em mim e que, de uma forma direta ou indireta, contribuíram para que chegasse aqui. Uma palavra especial de estima e apreço para os meus amigos e colegas de curso: Renato Alves, Ricardo Martins, Eduardo Vasconcelos, Fábio Rodrigues, Davide Gago, Roberto Faria, Roberto José e Ricardo José.

A todos o meu Muito Obrigado.
RESUMO

O presente trabalho pretende contribuir para o aprofundamento do conhecimento geológico e geotécnico das formações vulcânicas da Ilha da Madeira, com especial destaque para os parâmetros geomecânicos obtidos através de retroanálise, tendo por base as leituras em obra do Túnel do Cortado (Faial, Santana; Madeira).

Assim, o trabalho incide inicialmente sobre os túneis rodoviários na Ilha, com principal atenção nas características das suas secções transversais e emboquilhamentos. Segue-se um levantamento de todos os túneis construídos entre os anos de 1990 e 2013. Uma vez terminada esta apresentação, é feita uma caracterização geológica-geotécnica dos maciços da região, com especial atenção para as zonas geotécnicas afetas ao túnel em questão. São ainda abordadas metodologias de classificações geomecânicas, de retroanálise e modelação computacional.

Segue-se um processo de retroanálise através do qual foram gerados vários modelos por forma a efetuar uma análise bidimensional das secções do túnel, onde se procurou estabelecer uma relação entre as leituras de obra e os parâmetros de resistência e deformabilidade do maciço em questão. Por fim, os resultados referentes aos parâmetros de resistência obtidos através dos modelos são analisados, procedendo-se à sua comparação com outros estudos existentes para a Ilha.
PALAVRAS-CHAVE

Ilha da Madeira
Caracterização geológica-geotécnica
Parâmetros geomecânicos
Túneis
Retroanálise
Modelação Bidimensional
Elementos Finitos
Deslocamentos Superficiais
Convergências
Módulo de deformabilidade
Basalto
Tufos
Software Phase2
ABSTRACT

The present work aims to contribute to the improvement of knowledge on the geological and geotechnical of volcanic formations of Madeira Island, with special emphasis on the geomechanical parameters obtained by back analysis, based on the measurements performed during construction of the Cortado’s Tunnel (Faial, Santana; Madeira).

The work focuses initially on road tunnels in the Island, with main focus on the characteristics of their cross sections and entrance. It follows a survey of all tunnels built between 1990 and 2013. Once completed this presentation, a geological and geotechnical characterization of the region is made, with special highlight to Cortado’s Tunnel area. It also covers methods of geomechanical classifications, back analysis and computational modeling.

The following step a back calculation process was conducted by means of several two-dimensional cross section models of the tunnel, aiming to establish a relationship between the measurements during construction of the tunnel and strength and deformability parameters of the rock mass. Finally, the results for the strength parameters obtained are analyzed, and comparison with the results of other existing work to the Island is performed.
KEYWORDS

Madeira Island
Geological and geotechnical characterization
Geomechanical Parameters
Tunnels
Back calculation
Two-dimensional modeling
Finite elements
Surface displacements
Convergences
Module deformability
Basalt
Tuffs
Software Phase2
ÍNDICE

CAPÍTULO 1 - INTRODUÇÃO ... 1
 1.1. ENQUADRAMENTO GERAL ... 1
 1.2. OBJECTIVOS ... 2
 1.3. ORGANIZAÇÃO .. 2

CAPÍTULO 2 - TÚNEIS RODOVIÁRIOS RECENTES NA RAM ... 3
 2.1. EVOLUÇÃO DAS VIAS DE COMUNICAÇÃO DA RAM .. 3
 2.2. LEVANTAMENTO DOS TÚNEIS RODOVIÁRIOS NA RAM ENTRE 1990-2013 5
 2.3. CARACTERIZAÇÃO DOS TÚNEIS ... 13
 2.3.1. Secções transversais .. 14
 2.3.2. Emboquilhamentos .. 15

CAPÍTULO 3 - CARACTERIZAÇÃO GEOLOGICO-GEOTÉCNICA DOS MACIÇOS NA RAM ... 19
 3.1. GEOLOGIA DA ILHA DA MADEIRA .. 19
 3.2. CLASSIFICAÇÃO GEOMECÂNICA ... 25
 3.2.1. Classificação de Barton – Sistema Q ... 26
 3.2.2. Classificação de Bieniawski – Índice RMR (Rock Mass Rating) 28
 3.2.3. Sistema GSI ... 31
 3.2.4. Classificação de Wickham, Tiedemann e Skinner – índice RSR (Rock Structure Rating) .. 35
 3.2.5. Classificação de Manuel Rocha – índice MR ... 36

CAPÍTULO 4 - AVALIAÇÃO DE PARÂMETROS GEOMECÂNICOS POR RETROANÁLISE ... 39
 4.1. MODELAÇÃO DE ESCAVAÇÕES SUBTERRÂNEAS .. 41
 4.2. MODELOS 2D ... 42
 4.2.1. Metodologia adotada na criação do modelo ... 43
 4.3. MODELOS 3D ... 46
 4.4. MODELAÇÃO PHASE 2D ... 48

CAPÍTULO 5 - TÚNEL DO CORTADO. DESCRIÇÃO GERAL E ASPETOS CONSTRUTIVOS .. 53
 5.1. LOCALIZAÇÃO E GEOMETRIA .. 53
 5.2. CARACTERIZAÇÃO GEOLOGICO-GEOTÉCNICA .. 56
5.3. PROCESSO CONSTRUTIVO ... 59
 5.3.1. Métodos de Escavação ... 59
 5.3.2. Suportes Primários .. 62
 5.3.3. Suportes Primários nos Emboquilhamentos .. 65
 5.3.4. Suportes Secundários .. 66
 5.3.5. Impermeabilização ... 67

5.4. INSTRUMENTAÇÃO ... 68
 5.4.1. Medicações de convergência ... 68
 5.4.2. Medicações de marcas topográficas .. 69

5.5. SÍNTESE DOS ASPETOS CONSTRUTIVOS .. 70

CAPÍTULO 6 -ANÁLISE GEOMECÂNICA COM RECURSO A MODELOS NUMÉRICOS BIDIMENSIONAIS .. 73
 6.1. MODELOS DE CÁLCULO PARA COMPARAÇÃO COM PARÂMETROS DE PROJETO .. 73
 6.2. COMPARAÇÃO DOS PARÂMETROS OBTIDOS POR RETROANÁLISE COM OS PARÂMETROS DE PROJETO ... 87
 6.2.1. Análise dos valores de GSI ... 87
 6.2.2. Análise da coesão e ângulo de atrito ... 87
 6.2.3. Resistência à compressão uniaxial e Módulo de Young 91
 6.2.4. Análise dos erros .. 94
 6.2.5. Síntese dos valores utilizados segundo o critério de Hoek-Brown ... 95

CAPÍTULO 7 - CONSIDERAÇÕES FINAIS .. 97
 7.1. CONCLUSÕES ... 97
 7.2. DESENVOLVIMENTOS FUTUROS .. 98

REFERÊNCIAS BIBLIOGRÁFICAS ... 99

APÊNDICES .. 103
 APÊNDICE A – PLANTAS DO TÚNEL DO CORTADO 104
 APÊNDICE A.1 – ALTERAÇÃO DO TRAÇADO DO TÚNEL DO CORTADO. 105
 APÊNDICE A.2 – PLANTA COM SECÇÕES INSTRUMENTADAS DO TÚNEL DO CORTADO .. 109
 APÊNDICE A.3 – PLANTA TOPOGRÁFICA DO TÚNEL DO CORTADO 115
 APÊNDICE B – FICHAS DE CARACTERIZAÇÃO .. 121
ÍNDICE DE FIGURAS

Figura 1: Número de túneis e ano de entrada em serviço...6
Figura 2: Acumulado de túneis que entrou em serviço ..6
Figura 3: Rede da Viaexpresso e Vialitoral (Viaexpresso da Madeira, S.A, 2008)...........13
Figura 4: Extensão total em túnel na Viaexpresso ...13
Figura 5: Extensão total em túnel da Vialitoral ..13
Figura 6: Seções tipo dos Túneis Rodoviários Antigos (Brito, 2008).................................14
Figura 7: Seções tipo dos Túneis Via Rápida e Via Expresso (Brito, 2008)....................14
Figura 8: Seções Especiais (Brito, 2008) ..15
Figura 9: a) Problemas comuns nos emboquilhamentos (Mascarenhas, 2011); b) Queda de pedras (Calisto, 2012) ..15
Figura 10: Soluções para emboquilhamentos (Mascarenhas, 2011)16
Figura 11: Tipos de emboquilhamentos a) (Mascarenhas, 2011) b) (RAMEDM, 2011)17
Figura 12: Carta geológica da Madeira (Madeira, et al., 2007) ..20
Figura 13: Geologia da zona afeta ao Túnel do Cortado (Adaptado de Madeira, et al., 2007) ..24
Figura 14: Âbaco de determinação do suporte definitivo (Miranda, 2003)28
Figura 15: Parâmetros para cálculo do índice RMR Básico (Prada, 2013)29
Figura 16: a) Módulo de deformabilidade b) Obtenção da coesão, ângulo de atrito e o tempo de autossustentação (Prada, 2013) ...30
Figura 17: Avanço de escavação e suporte de acordo com classe do maciço (Miranda, 2003) ...31
Figura 18: Valores para constante m (Miranda, 2003) ..32
Figura 19: Classes qualitativas de GSI (Horgan, 2004) ..33
Figura 20: Localização do Túnel do Cortado (Bandeira, 2008)53
Figura 21: Traçado inicial do Túnel do Cortado (GRID; CENORPLAN)54
Figura 22: Secção a) corrente b) alargamento (Bandeira, 2008) 55

Figura 23: Secção a) Convergência Ramo B -Túnel do Cortado b) Galeria de emergência (Bandeira, 2008) ... 56

Figura 24: Faseamento de escavação a) Zona ZG2; b) Zona ZG3 60

Figura 25: Faseamento de escavação em zona ZG3 em secção de alargamento com aplicação de cambotas HEB180 .. 61

Figura 26: Faseamento de escavação para a zona ZG3 em secção de alargamento com aplicação de cambotas HEB200 e HEB220 .. 62

Figura 27: Secção tipo a) com pregagens b) com cambotas (GRID; CENORPLAN) 64

Figura 28: Sustimento tipo Zona ZG2 (GRID; CENORPLAN) 66

Figura 29: Sustimento tipo Zona ZG3 (GRID; CENORPLAN) 67

Figura 30: Medicação de Convergências em secção a) Corrente; b) Alargamento (GRID; CENORPLAN) ... 69

Figura 31: Medicação de marcas topográficas (GRID; CENORPLAN) 70

Figura 32: Deslocamentos superficiais na secção localizada ao Pk 3+136 (TU) 74

Figura 33: Fases de escavação de secção corrente Pk 0+067,5 (TU) 75

Figura 34: Fases de escavação para zona em secção de alargamento Pk 3+136 (TU) ... 76

Figura 35: Valores de parâmetros dos solos para o Modelo 1 no Pk 3+136 TU a) na cartografia b) em RocLab ... 77

Figura 36: Cálculo dos deslocamentos do modelo em secção corrente 79

Figura 37: Cálculo dos deslocamentos do modelo em secção de alargamento 80

Figura 38: Comparação dos deslocamentos na secção localizada ao Pk 0+067,5 (TU) ... 83

Figura 39: Comparação dos deslocamentos na secção localizada ao Pk 3+136 (TU) ... 84

Figura 40: Secção tipo para medição das convergências 85

Figura 41: Comparação das convergências na secção localizada ao Pk 3+136 (TU) ... 86

Figura 42: Intervalo dos valores de GSI para Basaltos e Tufos utilizados nos modelos ... 87

X
Figura 43: Comparação dos valores utilizados em modelação com os parâmetros de resistência em formações vulcânicas da ilha da Madeira88

Figura 44: Resistência à compressão uniaxial de a) Basaltos; b) Tufos91

Figura 45: Resistência à compressão uniaxial dos materiais utilizados93

Figura 46: Valores de REMQ para as várias secções com medições de convergências ...94

Figura 47: Valores de EMP para as várias secções com medições de convergências ...95
ÍNDICE DE TABELAS

Tabela 1: Túneis Rodoviários da Madeira concessionados pela DRE 7
Tabela 2: Túneis Rodoviários da Madeira concessionados pela VIALITORAL 8
Tabela 3: Túneis Rodoviários da Madeira concessionados pela VIAEXPRESSO 11
Tabela 4: Classificação Qualitativa da Rocha .. 27
Tabela 5: Valores de ESR ... 27
Tabela 6: Classes do maciço e necessidade de suporte 37
Tabela 7: Comparação entre os tipos de suporte para Bieniawski e Rocha 37
Tabela 8: Zonamento Geotécnico .. 57
Tabela 9: Valores de RMR e GSI .. 58
Tabela 10: Zonas geotécnicas e respetivas definições 70
Tabela 11: Stages utilizadas em zona de secção corrente 75
Tabela 12: Stages utilizadas em zona de secção de alargamento 76
Tabela 13: Parâmetros referentes aos tufos utilizados no modelo1 da secção de Pk 3+136 (TU) ... 78
Tabela 14: Deslocamentos verticais obtidos na secção localizada ao Pk 0+067,5 (TU) .. 82
Tabela 15: Deslocamentos verticais obtidos na secção ao Pk 3+136 (TU) 83
Tabela 16: Valores das convergências para a secção localizada ao Pk 3+136 (TU) 86
Tabela 17: Comparação entre parâmetros previstos pelo sistema RMR e parâmetros obtidos por retroanálise ... 90
Tabela 18: Valores segundo critério de Hoek-Brown 95
Tabela 19: Valores segundo (Lourenço, et al., 2010) 96
INTRODUÇÃO

1.1. ENQUADRAMENTO GERAL

A rede viária da ilha da Madeira sofreu uma enorme evolução nos últimos anos, fruto do investimento no desenvolvimento da Região. Esta nova rede permitiu que se vencessem imensas dificuldades impostas à circulação causadas pela orografia acidentada da Ilha, tendo sido os túneis as soluções de engenharia com maior impacto nas novas acessibilidades.

A caracterização geológico-geotécnica tornou-se fundamental na conceção destas soluções, pelo que um reconhecimento mais aprofundado das características dos maciços da região tornou-se imperativo. O conhecimento dos parâmetros geomecânicos dos maciços e a utilização dos métodos de caracterização adequados revelam-se fundamentais nas diversas fases de conceção dos túneis, por forma a garantir a criação de modelos que permitam maior fiabilidade na previsão do comportamento do maciço e, logo no dimensionamento das estruturas de suporte.

Assim, a presente tese visa contribuir com um estudo para um melhor conhecimento das características geomecânicas dos maciços da região, com recurso à retroanálise.
INTRODUÇÃO

1.2. OBJECTIVOS

Este trabalho tem como principal objetivo a realização de um estudo geomecânico de um túnel construído na Ilha da Madeira com recurso a dados obtidos na fase de construção.

Os objetivos principais do trabalho foram os seguintes:

- Contribuir para o aprofundamento do conhecimento das características geomecânicas das formações vulcânicas da Ilha da Madeira, recorrendo à realização de análises numéricas, através de modelos 2D, com recurso ao programa Phase2;
- Comparação das características geomecânicas obtidas via retroanálise com a classificação geotécnica dos maciços realizada à priori;
- Avaliar a adequabilidade dos sistemas de classificação às formações da ilha da Madeira.

Para além dos objetivos referidos, salienta-se que no contexto do tema optou-se por incluir um levantamento dos túneis rodoviários realizados na ilha da Madeira entre os anos de 1990 a 2013. No que diz respeito aos túneis antigos da ilha da Madeira, cuja construção é anterior a 1990, recomenda-se a consulta de (Alves, 2012).

1.3. ORGANIZAÇÃO

De forma a transmitir mais facilmente a abordagem tomada ao longo deste trabalho, organizou-se esta tese ao longo de sete capítulos:

No capítulo 2, Túneis rodoviários recentes na RAM, são abordadas algumas características dos túneis, com foco nas secções transversais e emboquilhamentos, bem como um levantamento dos túneis rodoviários na Região, fruto da evolução das vias de comunicação.

No capítulo 3, Caracterização geológico-geotécnica dos maciços na RAM, descrevem-se os vários complexos vulcânicos da Ilha, com especial destaque para a geologia da zona do Faial. Apresenta-se também uma síntese de metodologias de classificações geomecânicas, sendo algumas delas utilizadas no âmbito desta dissertação.

No capítulo 4, Avaliação de parâmetros geomecânicos por retroanálise, são descritos e analisados alguns métodos de retroanálise através da modelação de escavações subterrâneas
em 2D e 3D, bem como uma apresentação do programa *Phase2* utilizado ao longo da dissertação.

No capítulo 5, *Túnel do Cortado. Descrição geral e aspetos construtivos*, apresenta-se o processo construtivo do túnel com especial destaque para os aspetos que posteriormente influenciam os modelos criados, como por exemplo o faseamento aplicado na escavação e os suportes primários e secundários utilizados.

No capítulo 6, *Análise geomecânica com recurso a modelos numéricos bidimensionais*, é descrita toda a metodologia associada à criação das análises bidimensionais por elementos finitos. São analisados os resultados obtidos nas modelações e posteriormente comparados com os valores associados ao projeto e a outros estudos efetuados na Região.

Finalmente, no capítulo 7, são apresentadas as conclusões de todo o trabalho desenvolvido ao longo desta dissertação, bem como indicações sobre futuros trabalhos a desenvolver.
CAPÍTULO 2 - TÚNEIS RODOVIÁRIOS RECENTES NA RAM

2.1. EVOLUÇÃO DAS VIAS DE COMUNICAÇÃO DA RAM

Desde a sua descoberta e colonização que a Ilha da Madeira é referenciada como uma ilha com uma orografia acidentada, sendo muitas vezes caracterizada como uma ilha rasgada de “escarpas, despenhadeiros e abismos nascidos de um delírio geotécnico” (Pereira, 1989).

Assim, desde os primórdios da sua colonização que existiu necessidade de unir as diversas povoações, o que se revelou ser uma tarefa árdua, penosa e com elevados custos humanos, materiais e financeiros. A construção de caminhos foi realizada com recurso a força braçal e a instrumentos artesanais como picaretas, malhos e numa fase posterior dinamitando os imponentes maciços.

A pavimentação dos diferentes caminhos foi também uma tarefa árdua devido a requerer o transporte de terras e pedras para locais muitas vezes distantes. Mesmo assim as populações permaneceram isoladas durante mais de quatro séculos, sendo as comunicações feitas por via marítima entre os diversos pontos, especialmente as ligações com a capital (Pereira, 1989).

A necessidade de criar vias para permitir deslocações para os diversos pontos, proporcionou a criação de caminhos que favoreceram o crescimento da atividade agrícola, nomeadamente na produção de trigo, açúcar e vinho. Estes caminhos caraterizavam-se por serem estreitos e, na maior parte das vezes, não permitirem a utilização de meios de transporte, havendo alguns caminhos mais importantes que se apresentavam empedrados em basalto, com o objetivo de ajudar a tração dos animais.
No ano de 1836, um alvará régio veio constituir uma alavanca na construção de novas vias, ao instalar na Ilha a Comissão Encarregada das Estradas da Madeira. Com a construção de novas estradas e melhoramento dos antigos caminhos que originaram o incremento de atividades comerciais e profissionais entre populações mais rurais, urbanas e periféricas, deu-se o aparecimento das primeiras viaturas motorizada (Fernandes, et al., 1982).

Entre os anos de 1938 e 1955, foram concluídas algumas estradas, sendo a principal a estrada de cintura em volta da ilha, a Estrada Nacional 101, posteriormente designada de Estrada Regional 101, mantendo os 203km de extensão, e cujo último troço se encerrou com a inauguração do túnel que permitia o acesso entre a Boaventura e o Arco de São Jorge (Pereira, 1989).

Após a revolução do 25 de Abril de 1974, e com a autonomia do governo regional, foi objetivo deste desenvolver a precoce rede viária existente na ilha, com o intuito de diminuir o nível de isolamento que era apresentado por certas populações, contribuindo assim para melhorar as suas condições de vida e proporcionando desenvolvimento para a ilha.

Outro momento impulsionador que proporcionou o maior desenvolvimento da rede viária que a ilha possui hoje foi a adesão de Portugal à CEE em 1986, devido aos programas comunitários que promoveram o investimento nas infraestruturas existentes e essencialmente o melhoramento da rede viária, com a criação de vias rápidas (VR) e vias expresso (VE) (Dantas, 2012).

No ano de 2000 foi executado um reforço ao nível dos eixos principais de acesso rodoviário, que proporcionou uma reestruturação do sistema viário, no ordenamento do território, e permitiu o aparecimento de novos centros urbanos e aglomerados populacionais promovendo equidade e justiça social (Brito, 2008).

Os melhoramentos das vias de comunicação encurtaram o tempo de deslocação, trazendo comodidade e segurança aos utilizadores das mesmas. Para vencer a heterogeneidade e complexidade da litologia das formações vulcânicas, bem como o relevo imponente, que se apresentavam como grandes obstáculos à criação destas vias, foi necessário a adoção de um conjunto de soluções estruturais que passavam pela construção de túneis e pontes.
ESTUDO GEOMECÂNICO DO TÚNEL DO CORTADO NA ILHA DA MADEIRA

Parte integrante do traçado das novas vias são os túneis, que de início, apresentaram uma elevada complexidade de execução, devido às condicionantes geológicas, embora tenham constituído uma solução viável e hoje em dia representam uma percentagem bastante relevante do traçado das vias rápidas e vias expresso.

Para demonstrar a relevância desta opção da engenharia, é na região que se encontra construído o maior túnel duplo de Portugal com 2100m entre Machico e Caniçal, assim como outros exemplos de relevo como o Túnel da Encumeada com 3080m e o Túnel do Cortado com 3167m.

2.2. LEVANTAMENTO DOS TÚNEIS RODOVIÁRIOS NA RAM ENTRE 1990-2013

Os túneis, embora de execução dispendiosa, foram a forma encontrada para ultrapassar alguns problemas que se opunham ao traçado destas novas vias, apresentando um elevado número de vantagens (Monteiro, 1999):

- Permitiram uma maior flexibilidade na escolha e otimização dos traçados, nomeadamente no caso de zonas de orografia acidentada;
- Evitaram o recurso a grandes escavações e aterros;
- Reduziram a ocupação de terrenos agrícolas, terrenos com estruturas ou com valor arqueológico por parte dos novos troços rodoviários;
- Apresentaram um reduzido impacto ambiental, não promovendo efeitos adversos e alterações consideráveis na paisagem e nos aglomerados populacionais (Monteiro, et al., 2000).

Desde 1990 até ao presente foram construídos 127 túneis sendo que, 16 túneis estão sob a alçada da Direção Regional de Estradas (DRE), 61 túneis estão concessionados à Vialitoral e os restantes 50 concessionados à Viaexpresso.
Nas Figuras 1 e 2 é apresentada a distribuição com que os referidos túneis entraram em serviço.

Figura 1: Número de túneis e ano de entrada em serviço

Figura 2: Acumulado de túneis que entrou em serviço
As Tabelas 1, 2 e 3 apresentam um levantamento dos mesmos, onde é descritinado a localização de cada túnel, bem como a sua extensão e respetivo ano de entrada ao serviço. Os mesmos estão agrupados por entidade a que estão concessionados.

Tabela 1: Túneis Rodoviários da Madeira concessionados pela DRE

<table>
<thead>
<tr>
<th>Túneis Rodoviários da Madeira - Direção Regional de Estradas</th>
<th>Localização</th>
<th>Extensão (m)</th>
<th>Ano de entrada ao serviço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Túnel I (Bica da Cana/Encumeada)</td>
<td>ER105</td>
<td>167</td>
<td>1990</td>
</tr>
<tr>
<td>Túnel II (Bica da Cana/Encumeada)</td>
<td>ER105</td>
<td>159</td>
<td>1990</td>
</tr>
<tr>
<td>Túnel III (Bica da Cana/Encumeada)</td>
<td>ER105</td>
<td>98</td>
<td>1990</td>
</tr>
<tr>
<td>Túnel de Santa Catarina</td>
<td>ER119</td>
<td>132</td>
<td>1991</td>
</tr>
<tr>
<td>Túnel da Variante à Ribeira Brava</td>
<td>ER229</td>
<td>210</td>
<td>2006</td>
</tr>
<tr>
<td>Túnel de São Martinho</td>
<td>ER115</td>
<td>117</td>
<td>2007</td>
</tr>
<tr>
<td>Túnel de Ligação da Via Rápida a Câmara de Lobos</td>
<td>ER113</td>
<td>1.078</td>
<td>2009</td>
</tr>
<tr>
<td>Túnel I – Acesso ao Parque Empresarial (Campanário)</td>
<td>ER112</td>
<td>880</td>
<td>2009</td>
</tr>
<tr>
<td>Túnel II – Acesso ao Parque Empresarial (Campanário)</td>
<td>ER112</td>
<td>1.163</td>
<td>2009</td>
</tr>
<tr>
<td>Túnel da Pontinha</td>
<td>ER116</td>
<td>665</td>
<td>2009</td>
</tr>
<tr>
<td>Túnel da Levada do Cavalo (Ramo A)</td>
<td>ER116</td>
<td>145</td>
<td>2009</td>
</tr>
<tr>
<td>Túnel da Levada do Cavalo (Ramo B)</td>
<td>ER116</td>
<td>85</td>
<td>2009</td>
</tr>
<tr>
<td>Túnel da Ribeira da Ponta do Sol</td>
<td>ER111</td>
<td>100</td>
<td>2009</td>
</tr>
<tr>
<td>Túnel de São Vicente</td>
<td>ER101</td>
<td>2.404</td>
<td>2011</td>
</tr>
<tr>
<td>Túnel Madalena do Mar/Arco da Calheta</td>
<td>ER101</td>
<td>1.910</td>
<td>2011</td>
</tr>
<tr>
<td>Túnel 1 Vasco Gil (Cota 500)</td>
<td>ER109</td>
<td>365</td>
<td>2011</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>9.678</td>
<td></td>
</tr>
</tbody>
</table>
TÚNEIS RODOVIÁRIOS RECENTES NA RAM

Tabela 2: Túneis Rodoviários da Madeira concessionados pela VIALITORAL

<table>
<thead>
<tr>
<th>Túneis Rodoviários da Madeira – Concessionados à VIALITORAL</th>
<th>Localização</th>
<th>Extensão (m)</th>
<th>Ano de entrada ao serviço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Túnel do Cabo Girão (Sul)</td>
<td>ER101/VR1</td>
<td>1.200</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel do Cabo Girão (Norte)</td>
<td>ER101/VR1</td>
<td>1.200</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel da Caldeia (Sul)</td>
<td>ER101/VR1</td>
<td>210</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel da Caldeia (Norte)</td>
<td>ER101/VR1</td>
<td>304</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel da Alforra (Sul)</td>
<td>ER101/VR1</td>
<td>368</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel da Alforra (Norte)</td>
<td>ER101/VR1</td>
<td>418</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel das Preces (Sul)</td>
<td>ER101/VR1</td>
<td>280</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel das Preces (Norte)</td>
<td>ER101/VR1</td>
<td>280</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel da Quinta do Leme (Sul)</td>
<td>ER101/VR1</td>
<td>161</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel da Quinta do Leme (Norte)</td>
<td>ER101/VR1</td>
<td>200</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel da Pestana Júnior</td>
<td>ER101/VR1</td>
<td>150</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel de João Gomes (Sul)</td>
<td>ER101/VR1</td>
<td>138</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel de João Gomes (Norte)</td>
<td>ER101/VR1</td>
<td>140</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel do Jardim Botânico (Sul)</td>
<td>ER101/VR1</td>
<td>210</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel do Jardim Botânico (Norte)</td>
<td>ER101/VR1</td>
<td>208</td>
<td>1996</td>
</tr>
<tr>
<td>Túnel da Ribeira Brava (Sul)</td>
<td>ER101/VR1</td>
<td>1.800</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel da Ribeira Brava (Norte)</td>
<td>ER101/VR1</td>
<td>1.805</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel da Amoreira (Sul)</td>
<td>ER101/VR1</td>
<td>130</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel da Amoreira (Norte)</td>
<td>ER101/VR1</td>
<td>142</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel do Campanário (Sul)</td>
<td>ER101/VR1</td>
<td>310</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel do Campanário (Norte)</td>
<td>ER101/VR1</td>
<td>336</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel da Vera Cruz (Sul)</td>
<td>ER101/VR1</td>
<td>354</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel da Vera Cruz (Norte)</td>
<td>ER101/VR1</td>
<td>345</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel da Quinta Grande (Sul)</td>
<td>ER101/VR1</td>
<td>932</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel da Quinta Grande (Norte)</td>
<td>ER101/VR1</td>
<td>942</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel da Pinheiro Grande (Sul)</td>
<td>ER101/VR1</td>
<td>370</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel</td>
<td>Projeto</td>
<td>Km</td>
<td>Ano</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>Túnel da Pinheiro Grande (Norte)</td>
<td>ER101/VR1</td>
<td>370</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel da Cancela (Sul)</td>
<td>ER101/VR1</td>
<td>308</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel da Cancela (Norte)</td>
<td>ER101/VR1</td>
<td>330</td>
<td>1997</td>
</tr>
<tr>
<td>Túnel de João Abel de Freitas (Sul)</td>
<td>ER101/VR1</td>
<td>568</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel de João Abel de Freitas (Norte)</td>
<td>ER101/VR1</td>
<td>581</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel de João Abel de Freitas (Ramo de Saída)</td>
<td>ER101/VR1</td>
<td>154</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel dos Marmeleiros (Sul)</td>
<td>ER101/VR1</td>
<td>738</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel dos Marmeleiros (Norte)</td>
<td>ER101/VR1</td>
<td>705</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel dos Marmeleiros (Ramo de Entrada)</td>
<td>ER101/VR1</td>
<td>234</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Quinta da Palmeira (Sul)</td>
<td>ER101/VR1</td>
<td>243</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Quinta da Palmeira (Norte)</td>
<td>ER101/VR1</td>
<td>264</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Abegoaria Oeste (Sul)</td>
<td>ER101/VR1</td>
<td>315</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Abegoaria Oeste (Norte)</td>
<td>ER101/VR1</td>
<td>315</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Abegoaria Este (Sul)</td>
<td>ER101/VR1</td>
<td>360</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Abegoaria Este (Norte)</td>
<td>ER101/VR1</td>
<td>360</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel Mãe de Deus (Sul)</td>
<td>ER101/VR1</td>
<td>215</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel Mãe de Deus (Norte)</td>
<td>ER101/VR1</td>
<td>230</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel de São Pedro</td>
<td>ER101/VR1</td>
<td>175</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel de Santa Cruz Oeste</td>
<td>ER101/VR1</td>
<td>150</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel de Santa Cruz Este</td>
<td>ER101/VR1</td>
<td>110</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel de Santa Catarina</td>
<td>ER101/VR1</td>
<td>240</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Queimada I</td>
<td>ER101/VR1</td>
<td>730</td>
<td>2001</td>
</tr>
<tr>
<td>Túnel da Queimada II</td>
<td>ER101/VR1</td>
<td>720</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel da Queimada (Ramo de Saída)</td>
<td>ER101/VR1</td>
<td>325</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel do Piquinho (Este)</td>
<td>ER101/VR1</td>
<td>437</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel do Piquinho (Oeste)</td>
<td>ER101/VR1</td>
<td>460</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel da Fazenda (Sul)</td>
<td>ER101/VR1</td>
<td>162</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel da Fazenda (Norte)</td>
<td>ER101/VR1</td>
<td>179</td>
<td>2004</td>
</tr>
</tbody>
</table>
Túneis Rodoviários Recentes na RAM

<table>
<thead>
<tr>
<th>Túnel na Façenda (Ramo de Saída)</th>
<th>ER101/VR1</th>
<th>205</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Túnel Duplo do Caniçal (Sul)</td>
<td>ER101/VR1</td>
<td>2.140</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel Duplo do Caniçal (Norte)</td>
<td>ER101/VR1</td>
<td>2.103</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel dos Portais (Sul)</td>
<td>ER101/VR1</td>
<td>687</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel dos Portais (Norte)</td>
<td>ER101/VR1</td>
<td>699</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel da Palmeira (Sul)</td>
<td>ER101/VR1</td>
<td>878</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel da Palmeira (Norte)</td>
<td>ER101/VR1</td>
<td>888</td>
<td>2004</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>30.511</td>
<td></td>
</tr>
</tbody>
</table>
Tabela 3: Túneis Rodoviários da Madeira concessionados pela VIAEXPRESSO

<table>
<thead>
<tr>
<th>Túneis Rodoviários da Madeira – Concessionados à VIAEXPRESSO</th>
<th>Localização</th>
<th>Extensão (m)</th>
<th>Ano de entrada ao serviço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Túnel da Tabua</td>
<td>ER101/VE3</td>
<td>640</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel do Lugar de Baixo</td>
<td>ER101/VE3</td>
<td>720</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Calheta</td>
<td>ER101/VE3</td>
<td>819</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Igreja</td>
<td>ER101/VE3</td>
<td>506</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Ribeira Funda</td>
<td>ER223</td>
<td>220</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel Jardim/Paúl</td>
<td>ER223/VE7</td>
<td>2.510</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Água D’Alto</td>
<td>ER101/VE2</td>
<td>600</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Ribeira do Inferno</td>
<td>ER101/VE2</td>
<td>425</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel Ladeira da Vinha</td>
<td>ER101/VE2</td>
<td>475</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel João Delgado</td>
<td>ER101/VE2</td>
<td>1.274</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel das Cales</td>
<td>ER101/VE1</td>
<td>850</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel do Norte</td>
<td>ER101/VE1</td>
<td>2.100</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Guarda</td>
<td>ER101/VE1</td>
<td>243</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel do Serrado</td>
<td>ER101/VE1</td>
<td>129</td>
<td>2000</td>
</tr>
<tr>
<td>Túnel da Encumeada</td>
<td>ER104/VE4</td>
<td>3.100</td>
<td>2002</td>
</tr>
<tr>
<td>Túnel Ribeira Brava/Tabua</td>
<td>ER101/VE3</td>
<td>1.395</td>
<td>2003</td>
</tr>
<tr>
<td>Túnel da Achada</td>
<td>ER101/VE1</td>
<td>464</td>
<td>2003</td>
</tr>
<tr>
<td>Túnel da Cruz</td>
<td>ER101/VE1</td>
<td>654</td>
<td>2003</td>
</tr>
<tr>
<td>Túnel da Meia Légua</td>
<td>ER104/VE4</td>
<td>470</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel do Gesteiro</td>
<td>ER101/VE3</td>
<td>186</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel da Ponta do Sol/Madalena do Mar</td>
<td>ER101/VE3</td>
<td>2.682</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel do Arco</td>
<td>ER101/VE3</td>
<td>1.373</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel do Doutor</td>
<td>ER101/VE3</td>
<td>958</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel dos Moinhos</td>
<td>ER101/VE3</td>
<td>290</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel do Jardim Pelado</td>
<td>ER101/VE3</td>
<td>1.020</td>
<td>2004</td>
</tr>
<tr>
<td>Túnel Ribeiro Moinho</td>
<td>ER101/VE2</td>
<td>136</td>
<td>2004</td>
</tr>
<tr>
<td>Túneis Rodoviários Recentes NA RAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Túnel do Lugar</td>
<td>ER101/VE2</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>Túnel da Fajã das Contreiras</td>
<td>ER101/VE2</td>
<td>2.586</td>
<td></td>
</tr>
<tr>
<td>Túnel dos Casais</td>
<td>ER101/VE2</td>
<td>1.363</td>
<td></td>
</tr>
<tr>
<td>Túnel da Ribeira da Janela</td>
<td>ER101/VE2</td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>Túnel da Fajã do Barro</td>
<td>ER101/VE2</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>Túnel Fajã Manuel</td>
<td>ER101/VE2</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>Túnel Saramago</td>
<td>ER104/VE4</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Túnel dos Cardais</td>
<td>ER104/VE4</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Túnel Terra Chã</td>
<td>ER104/VE2</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>Túnel do Cortado</td>
<td>ER101/VE1</td>
<td>3.168</td>
<td></td>
</tr>
<tr>
<td>Túnel da Rocha do Navio</td>
<td>ER101/VE1</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>Túnel de Santana</td>
<td>ER101/VE1</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Túnel do Pinheiro</td>
<td>ER101/VE1</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Túnel da Ribeira de São Jorge</td>
<td>ER101/VE1</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>Túnel do Cabeço da Cancela</td>
<td>ER101/VE5</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td>Túnel das Eiras</td>
<td>ER101/VE5</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>Túnel do Pomar</td>
<td>ER101/VE5</td>
<td>903</td>
<td></td>
</tr>
<tr>
<td>Túnel da Nogueira</td>
<td>ER101/VE5</td>
<td>735</td>
<td></td>
</tr>
<tr>
<td>Túnel do Curral das Freiras</td>
<td>ER107/VE6</td>
<td>2.404</td>
<td></td>
</tr>
<tr>
<td>Túnel da Raposeira</td>
<td>ER101/VE3</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Túnel do Lombo da Velha</td>
<td>ER101/VE3</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Túnel do Seixal</td>
<td>ER101/VE2</td>
<td>1.236</td>
<td></td>
</tr>
<tr>
<td>Túnel da Quinta</td>
<td>ER101/VE1</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>Túnel da Ribeira Grande</td>
<td>ER101/VE1</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>42.506</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13

De modo a avaliar a relevância deste tipo de infraestruturas na rede viária da Ilha da Madeira, a Figura 3 apresenta a distribuição das vias concessionadas pela Viaexpresso e pela Vialitoral, e nas Figuras 4 e 5 são apresentadas comparações sobre os valores totais da extensão em túnel e da extensão em restante via para as mesmas vias.

![Figura 3: Rede da Viaexpresso e Vialitoral (Viaexpresso da Madeira, S.A, 2008)](image)

Figura 3: Rede da Viaexpresso e Vialitoral (Viaexpresso da Madeira, S.A, 2008)

<table>
<thead>
<tr>
<th>VIAEXPRESSO</th>
<th>VIALITORAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensão em Túnel</td>
<td>56%</td>
</tr>
<tr>
<td>Restante Via</td>
<td>44%</td>
</tr>
</tbody>
</table>

Figura 4: Extensão total em túnel na Viaexpresso
Figura 5: Extensão total em túnel da Vialitoral

2.3. CARACTERIZAÇÃO DOS TÚNEIS

A melhor forma de caraterizar a evolução sofrida pelos túneis que integram os novos traçados da Ilha é através da sua comparação com os antigos túneis rodoviários.

Novas soluções geométricas foram aparecendo de modo a poder dar resposta ao maior fluxo rodoviário, promovendo uma evolução das secções tipos. Para além da evolução apresentada nas secções tipo, os emboquilhamentos também evoluíram. Os emboquilhamentos sem boca passou-se para emboquilhamentos com paredes de proteção de taludes e com consolas de proteção, proporcionando uma melhor proteção para os utilizadores e uma melhor transição do exterior para o interior destas infraestruturas.
2.3.1. Secções transversais

As secções transversais nos túneis rodoviários na RAM sofreram uma grande evolução desde o início dos anos 90. Esta evolução obrigou a que fossem utilizadas uma vasta gama ferramentas, tecnologias e soluções geométricas modernas, por forma a conciliar as novas modernas estruturas às condições que a Ilha apresentava.

Estas novas soluções levaram ao abandono das antigas secções tipo utilizadas nos túneis rodoviários antigos (Figura 6), que apresentavam geometria retangular ou em arco com zonas sobre-escavadas na abóboda e hasteais.

![Figura 6: Seções tipo dos Túneis Rodoviários Antigos (Brito, 2008)]

No que se refere às novas soluções implementadas ao longo dos novos acessos viários, estas foram predominantemente de geometrias do tipo arcos circulares ou elípticos de 9 metros (Figura 7), podendo ser unidirecionais ou bidireccionais.

![Figura 7: Seções tipo dos Túneis Via Rápida e Via Expresso (Brito, 2008)]

Para além destas secções mais usuais, surgiram algumas secções especiais (Figura 8). As diferenças destas para as anteriores surgem principalmente no aumento das dimensões das suas secções.
2.3.2. Emboquilhamentos

As características geotécnicas dos terrenos a atravessar condicionam bastante a execução destas obras, pelo que um estudo detalhado deve ser levado a cabo sobretudo nas zonas dos emboquilhamentos. Estas zonas devem ser objeto de estudos particulares, tanto topográficos como geotécnicos, de modo a evitar, diminuir ou gerir uma série de problemas que são frequentes (Pereira, 1987).

Alguns dos problemas mais comuns nestas áreas estão relacionados com quedas da secção delgada, queda de pedras e blocos soltos, deslizamentos, quedas de estratos e de águas superficiais (Figura 9).

Figura 9: a) Problemas comuns nos emboquilhamentos (Mascarenhas, 2011); b) Queda de pedras (Calisto, 2012)
As soluções mais usuais são redução do declive do maciço junto ao emboquilhamento, a construção de bancadas, execução de pregagens e enfilagens, construção de muros, colocação de drenos internos e de superfície, ou execução de algumas técnicas de melhoramento da resistência do solo nestas zonas (Mascarenhas, 2011).

Nos túneis localizados na RAM foram executados vários trabalhos tendo em consideração estes problemas. A maioria dos trabalhos focou a consolidação dos maciços junto as bocas dos túneis com o objetivo de evitar a individualização de colunas e a formação de consolas de basalto, controlo da infiltração de águas nas diáclases, impedimento da descompressão progressiva do maciço, limpeza da vegetação e blocos soltos, saneamento e demolição dos blocos com evidências de desprendimento, limpeza das fendas que se apresentavam e preenchimento das mesmas com argamassa e injeções de calda de cimento assim como aplicação de pregagens e redes pregadas (Baião, 2008).

Na Figura 10 são apresentadas algumas das soluções aplicadas mais vulgarmente.

Figura 10: Soluções para emboquilhamentos (Mascarenhas, 2011)

As ações que afetam os terrenos nas zonas dos emboquilhamentos e as estruturas relacionadas com estes, embora representem e se limitem a pequenas zonas em comparação com o desenvolvimento de uma obra deste tipo, provocam também grande impacto ambiental devido ao desmonte superficial dos maciços e à criação de corpos estranhos que criam um efeito visual negativo.
O dimensionamento de um emboquilhamento deve ter o cuidado em garantir uma transição adequada do exterior para um espaço confiando com iluminação artificial, um enquadramento agradável com a envolvente e apresente condições de segurança relativamente a problemas frequentes como a queda de blocos e deslizamentos (Barreto, 2000).

De modo a conciliar todos os aspetos de segurança, impacto ambiental e visual, custos e condições topográficas e geológicas, é possível observar por toda a ilha exemplos de uma conceção variável de soluções geométricas adotadas para os emboquilhamentos, apresentadas na Figura 11.
CAPÍTULO 3 - CARACTERIZAÇÃO GEOLÓGICO-GEOTÉCNICA DOS MACIÇOS NA RAM

3.1. GEOLOGIA DA ILHA DA MADEIRA

A construção de uma obra subterrânea de caráter definitivo como são os túneis, obriga a que sejam levados a cabo estudos com o objetivo de efetuar um reconhecimento da geologia presente no local, por esta ser o fator mais condicionante neste tipo de obras.

A Ilha da Madeira apresenta uma geologia extremamente heterogénea de caráter vulcânico e uma morfologia fortemente talhada e alterada. A sua morfologia acidentada é resultante por um lado da combinação de agentes erosivos que criaram as formas de relevo atuais, e por outro, da litologia que apresenta uma alternância de materiais que vão desde a presença de maciços basálticos até rochas piroclásticas como tufos, brechas e cinzas (Ribeiro, et al., 2007).

Devido à grande heterogeneidade representada pelos maciços vulcânicos presentes na ilha, assim como à sua complexa história geológica, estes originam dificuldades no que se refere ao seu respetivo conhecimento (Brito, et al., 1997).

São dois os principais tipos de rochas que afloram na Ilha da Madeira, as rochas ígneas, que estão intimamente ligadas ao vulcanismo associado à criação da ilha, e as rochas sedimentares, que para além de terem outras proveniências, estão também relacionadas com a erosão das rochas ígneas. A distinção entre estes tipos de rocha é por norma fácil, embora existam alguns depósitos piroclásticos e sedimentares, que podem dificultar essa tarefa (Ribeiro, et al., 2007).
CARACTERIZAÇÃO GEOLÓGICO-GEOTÉCNICA DOS MACIÇOS NA RAM

Com base na notícia explicativa da carta geológica da Ilha da Madeira (Silveira, et al., 2010), é possível identificar os complexos vulcânicos (Figura 12) que materializam o seu edifício vulcânico, e caracterizar as unidades vulcânico-estratigráficas presentes nestes, bem como depósitos sedimentares, depósitos de vertentes, depósitos de movimentos de massa e outros, presentes um pouco por toda a ilha.

Os complexos vulcânicos e as suas unidades Vulcano-estratigráficas são sucintamente apresentadas em seguida, por ordem da sua formação geológica.

- **Complexo vulcânico Antigo ou Inferior (CVA)**

Este complexo contém os materiais que remontam ao passado mais distante da história geológica, (> 5,7Ma), apresentando assim materiais com um grau de alteração elevado e extremamente argilitizados. É possível reconhecer vários filões neste complexo, que são provenientes dos complexos posteriores. Neste complexo apresentam-se duas unidades Vulcano-estratigráficas:

 - **Unidade do Porto da Cruz (CVA1)**

 Esta unidade apresenta os materiais mais antigos da ilha e emerge apenas em 2 regiões, sendo elas Porto da Cruz e São Vicente. As suas rochas de composição máfica apresentam-se extremamente alteradas, por vezes
irreconhecíveis quanto à sua estrutura interna e quanto à sua natureza petrológica, sendo que no que concerne à generalidade destes afloramentos, estes encontram-se fortemente arigilitizados.

- **Unidade dos Lameiros (CVA2)**
 Esta unidade apresenta rochas sedimentares marinhas carbonatadas, e apenas emerge numa única região, junto à margem direita da Ribeira de São Vicente. Estas rochas são atravessadas, à semelhança da unidade do Porto da Cruz, por variadíssimos filões de natureza máfica.

- **Complexo Vulcânico Intermédio (CVI)**
 Este complexo reproduz a segunda fase do complexo vulcânico da Ilha, representando o volume principal do edifício subaéreo do qual a Ilha da Madeira é constituída. É um complexo que demonstra um longo período de tempo, (5,7Ma a 1,8Ma), durante o qual a atividade vulcânica terá sido intensa. Neste complexo apresentam-se 3 unidades Vulcano-estratigráficas:

 - **Unidade da Encumeada (CVI1)**
 Esta unidade é bem visível na zona da Encumeada, apresentando no topo uma superfície muito irregular devido a exposição a agentes erosivos, e cortada por uma série de filões. Os materiais presentes nesta unidade são produtos vulcânicos de composição maioritariamente máfica, por vezes muito alterados, sendo também possível observar derrames lávicos alternados com tufos e brechas, e inúmeros depósitos sedimentares.

 - **Unidade da Penha d’Águia (CVI2)**
 Visível em quase toda a extensão da costa norte da ilha, com destaque para os taludes das arribas litorais ou para as vertentes dos vales mais encaixados, esta unidade contribui com o volume principal do edifício subaéreo da Ilha. Nesta unidade estão presentes sequências de origem vulcânica máfica, formando grandes empilhamentos de escoaduras pouco alteradas, bem como sequências sedimentares epiclásticas. Em alguns afloramentos desta unidade é ainda
possível observarem-se brechas e conglomerados de avalanches de detritos, resultantes de movimentos de massa de deslizamentos.

- Unidade do Curral das Freiras (CVI3)
 Esta unidade emerge na maior parte da costa ocidental, em arribas situadas no litoral norte e nas encostas de vales mais profundos no interior da ilha. Apresenta no geral várias sequências de produtos de atividade efusiva, onde é possível encontrar grandes derrames basálticos pouco alterados, sendo ocasionalmente alternada por depósitos sedimentares e alguns filões.

- **Complexo Vulcânico Superior (CVS)**

Este terceiro e último complexo, representa as últimas manifestações de atividade vulcânica. Os materiais resultantes são lavas predominantemente alcalinas que originaram basanitos e basaltos. É composto por 2 unidades Vulcano-estratigráficas bem definidas e uma outra que resulta da impossibilidade de separar as 2 anteriores:

- **Unidade dos Lombos (CVS1)**
 Aflorando em toda a ilha, recebeu esta designação por apresentar tais formas de relevo, pouco degradadas pelo efeito da erosão. É a unidade responsável pelo revestimento vulcânico da morfologia anteriormente existente, responsável pelo preenchimento de alguns vales e pelo aumento das dimensões da ilha, apresenta um efeito de escoadas vulcânicas que tiveram origem nos pontos mais altos desta e que correram em direção ao litoral. Formada por derrames lávicos, com composição fortemente basáltica, com graus de alteração variáveis, apresenta alguns níveis intercalados de depósitos de queda, depósitos sedimentares e produtos máficos.

- **Unidade do Funchal (CVS2)**
 Apresenta os produtos de um vulcanismo mais recente, com uma boa exposição nas zonas do Funchal e Câmara de Lobos, expondo materiais geralmente pouco alterados, cortados por raros filões associados aos centros eruptivos desta mesma unidade. Apresenta derrames lávicos com diferentes composições onde surgem alternâncias ocasionais de piroclastos de queda e
produtos de atividade freato-magmática. No litoral pouco profundo, apresenta materiais resultantes de erupções que ocorreram em ambiente submarino.

- Unidade dos Lombos e do Funchal indiferenciadas (CVS1-2)
 Ocorre ainda uma última unidade, que aflora em pontos específicos da Ilha, como é o caso da Ponta de São Lourenço, Santana – São Jorge e Porto Moniz. Estas zonas são de difícil separação das duas unidades anteriormente descritas.

As cartas geológicas como a de (Silveira, et al., 2010), que materializam e sintetizam informações sobre os materiais rochosos de uma região mostram-se de grande importância em obras de caráter subterrâneo. Estas cartas para além das informações sobre a natureza dos materiais, a sua distribuição espacial à superfície e em profundidade, posição, atitude e idade relativa, podem ainda conter colunas estratigráficas e cortes geológicos com o propósito de facilitar a consulta e a leitura da sua história geológica (Rebelo, 1999).

Através delas é possível obter a informação crucial para a localização e implantação de alicerces, verificar a presença de acidentes tectónicos capazes de condicionar a execução da obra e ainda possibilitam a previsão de custos por exemplo com a execução de escavações, aterros e consolidação de taludes.

3.1.1. Geologia do Faial – Santana (Madeira)

Segundo a Carta Geológica da Ilha da Madeira (Silveira, et al., 2010) é possível observar uma geologia muito heterogênea na zona do Faial, que se apresenta composta por diversas massas dos diferentes complexos vulcânicos que materializam a Ilha da Madeira. É também nesta área que podemos encontrar o Túnel do Cortado que permite estabelecer uma ligação com a povoação de Santana.

De acordo com o Relatório Geológico-Geotécnico Final (Horgan, 2004), os terrenos atravessados pelo Túnel do Cortado pertencem ao Complexo Vulcânico Pós-Miocénico. Na Figura 13 encontra-se assinalada a zona afeta à construção do Túnel do Cortado, onde é possível com mais precisão classificar os terrenos como pertencentes aos Complexos Vulcânicos Intermédio e Superior.
Figura 13: Geologia da zona afeta ao Túnel do Cortado (Adaptado de Madeira, et al., 2007)

Com base no mesmo relatório elaborado por (Horgan, 2004), os materiais revelados durante a escavação do túnel eram maioritariamente grandes massas de derrames lávicos com alternâncias de material tufóide e massas brechóides.

O material lávico encontrado caracteriza-se por uma resistência à compressão uniaxial elevada, contudo, o índice de fracturação deste bem como as características das suas diáclases e respetivos preenchimentos poderão fazer baixar a sua resistência significativamente. A presença de água neste material proporcionou quedas de material e desagregação do maciço, devido ao deslizamento que promove entre blocos.

No que se refere à sua exposição, este manifestava-se em formações lávicas compactas e formações lávicas basálticas fraturadas. As primeiras formações não apresentam grande grau de alteração e exibem uma grande compacidade e densidade, enquanto nas segundas formações é visível um elevado grau de alteração e fracturação.

As massas brechóides apresentavam-se através de formações piroclásticas brechóides compactas que se expunham ligeiramente alteradas mas bastante compactas e resistentes, e através de formações piroclásticas brechóides desagregáveis que, ao contrário das anteriores, apresentavam uma baixa resistência aliada a uma elevada deformabilidade.

Quanto ao material tufóide, embora este apresente uma fraca resistência quando submetido à compressão uniaxial, quando submetido a elevadas profundidades e pressões contribui para o confinamento do maciço, aumentando a sua compacidade. No entanto, nas zonas dos emboquilhamentos ou de recobrimento baixo, onde a presença de água se faz sentir
ESTUDO GEOMECÂNICO DO TÚNEL DO CORTADO NA ILHA DA MADEIRA

maioritariamente, este material diminui significativamente a sua resistência, vindo a desagregar-se.

A exposição deste material fez-se através de formações piroclásticas de tufos compactos e através de formações piroclásticas de tufos desagregáveis. Enquanto a primeira formação é caracterizada por acumulações de material fino de natureza areno-siltosa e silt-argilosa com um comportamento relativamente impermeável, a segunda formação apresenta o mesmo material embora num estado muito alterado a decomposto e de fácil desagregação.

Assim, com base nos parâmetros litológicos, estruturais e mecânicos que os materiais descritos revelam, foi definido um zonamento geotécnico que resultou em 4 zonas geotécnicas, apresentadas no subcapítulo 5.2.

3.2. CLASSIFICAÇÃO GEOMECÂNICA

Numa obra de carácter subterrâneo é fundamental que seja levado a cabo um reconhecimento geológico – geotécnico. Este reconhecimento é importante para que sejam estimadas as características dos maciços afetos a tais obras, pois as suas características condicionam fortemente os custos e o dimensionamento deste tipo de obras (Gama, 1997).

A classificação geomecânica, embora aplicável apenas a maciços rochosos, é uma ferramenta útil utilizada na realização de relatórios geotécnicos. Em túneis rodoviários e obras de carácter rodoviário estes relatórios permitem a identificação dos materiais atravessados, permitindo a projeção de aterros e escavações, escolha das técnicas de desmonte e execução mais adequadas e dimensionamento de estruturas (Prates, 1997).

Através das propriedades identificadas dos maciços em análise, seja por recolha de bibliografia, amostras ou por observação direta, é possível averiguar e tentar prever, o comportamento que o maciço demostrará e quais os suportes adequados para serem aplicados aquando da escavação.

Seguidamente são apresentadas sucintamente algumas das classificações geomecânicas utilizadas com maior frequência.
3.2.1. Classificação de Barton – Sistema Q

É um sistema baseado na observação de inúmeras escavações e obras subterrâneas que para além de classificar qualitativamente o maciço permite retirar informações relativas à estabilidade e às necessidades de suporte para realização das mesmas. Através das observações realizadas por (Barton, 1974), estabelece-se um índice de qualidade, Q, assente em 6 parâmetros:

- RQD - Índice de qualidade da rocha;
- Jn - Número de famílias de fraturas;
- Jr - Rugosidade das fraturas;
- Ja - Alteração das paredes das fraturas;
- Jw - Caudal;
- SRF - Fator relacionado com o estado de tensão (Stress Reduction Factor).

Através destes 6 parâmetros é possível a determinação do índice Q através da seguinte expressão:

\[
Q = \frac{RQD \cdot Jr \cdot Jw}{Jn \cdot Ja \cdot SRF}
\]

Em que o primeiro termo da expressão caracteriza a estrutura do maciço em análise, ao nível da dimensão dos blocos. O segundo termo refere-se às descontinuidades e à rugosidade ou alteração do material que define o seu enchimento. O último membro é representado pelo estado de tensão do maciço e pela pressão da água. Através do valor obtido de Q é possível definir a qualidade do maciço, inserindo-o numa das 9 classes qualitativas para esse efeito (Tabela 4).

Com a qualidade do maciço definida, procura-se obter recomendações para o tipo de suporte a aplicar para a estabilização da escavação, recorrendo-se a um parâmetro denominado por Dimensão Equivalente (De), cujo valor é obtido através do quociente do vão, diâmetro ou altura de escavação pelo valor de ESR (Excavation Support Ratio). O ESR é um valor que carateriza o tipo de escavação e a segurança exigida à mesma e pode ser consultado na Tabela 5.
Tabela 4: Classificação Qualitativa da Rocha

<table>
<thead>
<tr>
<th>Valor de Q</th>
<th>Tipo de rocha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001-0.01</td>
<td>Excecionalmente má</td>
</tr>
<tr>
<td>0.01-0.1</td>
<td>Extremamente má</td>
</tr>
<tr>
<td>0.1-1</td>
<td>Muito Má</td>
</tr>
<tr>
<td>1-4</td>
<td>Má</td>
</tr>
<tr>
<td>4-10</td>
<td>Mediana</td>
</tr>
<tr>
<td>10-40</td>
<td>Boa</td>
</tr>
<tr>
<td>40-100</td>
<td>Muito Boa</td>
</tr>
<tr>
<td>100-400</td>
<td>Extremamente Boa</td>
</tr>
<tr>
<td>400-1000</td>
<td>Excecionalmente Boa</td>
</tr>
</tbody>
</table>

Tabela 5: Valores de ESR

<table>
<thead>
<tr>
<th>Classe</th>
<th>Tipo de escavação</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cavidades mineiras temporárias</td>
<td>2,5</td>
</tr>
<tr>
<td>B</td>
<td>Cavidades mineiras definitivas, túneis de aproveitamento hidráulicos, túneis piloto, túneis de desvio, escavações superiores de grandes cavidades</td>
<td>1,6-2,0</td>
</tr>
<tr>
<td>C</td>
<td>Cavernas de armazenagem, estações de tratamento de águas, pequenos túneis rodoferroviários, túneis de acesso</td>
<td>1,2-1,3</td>
</tr>
<tr>
<td>D</td>
<td>Centrais elétricas, túneis rodoferroviários de grande dimensão, abrigos de defesa, bocas de entrada, intersecções</td>
<td>0,9-1,1</td>
</tr>
<tr>
<td>F</td>
<td>Centrais nucleares subterrâneas, estações de caminho-de-ferro, equipamentos de desporto ou públicos, fábricas, túneis para gasodutos (pipelines) de grandes dimensões</td>
<td>0,5-0,8</td>
</tr>
</tbody>
</table>

Com o valor de \(D_e \) e do índice \(Q \) é então determinado o tipo de suporte definitivo a aplicar através do ábaco da Figura 14.
É ainda possível estimar o módulo de deformabilidade através do sistema Q, aplicando a equação 2:

\[E_M (GPa) = 25Q^{1/3} \] (2)

Por fim, salienta-se que o sistema Q permite ainda estimar as convergências do túnel, o comprimento de pregagens e ancoragens e pressão sobre o suporte definitivo.

3.2.2. Classificação de Bieniawski – Índice RMR (Rock Mass Rating)

Esta classificação proposta por (Bieniawski, 1978) é baseada numa vasta experiência obtida em obras de carácter subterrâneo, e devido à sua vasta utilização, tem vindo a ser refinada com base em resultados de variadíssimos casos práticos.

Esta classificação é baseada em 6 parâmetros, sendo que cada um tem uma influência e peso diferente no comportamento do maciço (Figura 15). Os parâmetros considerados são os seguintes:

- Resistência à compressão uniaxial da rocha intacta;
- RQD (Rock Quality Designation);
- Espaçamento entre descontinuidades:
Características das descontinuidades;
Presença de água;
Orientação das descontinuidades.

![Figura 15: Parâmetros para cálculo do índice RMR Básico (Prada, 2013)](image)

A soma dos 5 primeiros parâmetros resulta no índice RMR básico:

\[
RMR\text{ Básico} = P1 + P2 + P3 + P4 + P5
\]

(3)

Através da soma do sexto parâmetro que contabiliza o efeito favorável ou desfavorável da orientação das descontinuidades, como ajuste do somatório, obtém-se o valor de final de RMR:

\[
RMR = RMR\text{ Básico} + P6
\]

(4)

Através do valor de RMR corrigido o maciço é então inserido numa das 5 classes que o classificam qualitativamente, sendo que quanto mais elevado este índice se apresentar, maior será a qualidade do maciço.

Com o valor de RMR e através da correlação apresentada na Figura 16 b, é possível proceder à avaliação do módulo de deformabilidade (\(E_M\)). Com base na classe em que o maciço se situa
é ainda possível obter um intervalo de valores para os parâmetros de Mohr-Coulomb como são a coesão (c'') e ângulo de atrito (\(\phi''\)), e ainda prever o tempo de autossustentação (Figura 16 b).

Figura 16: a) Módulo de deformabilidade b) Obtenção da coesão, ângulo de atrito e o tempo de autossustentação (Prada, 2013)

Para além desta informação, (Bieniawski, 1989) apresenta algumas recomendações relativas ao avanço da escavação e aos respetivos suportes a adotar de acordo com a classe a que o maciço se insere (Figura 17), sendo a sua aplicação destinada a túneis que apresentem vãos com cerca de 10 metros e cuja escavação é efetuada com recurso a explosivos.
Figura 17: Avanço de escavação e suporte de acordo com classe do maciço (Miranda, 2003)

<table>
<thead>
<tr>
<th>Classe do maciço</th>
<th>Escavação</th>
<th>Suporte</th>
<th>Cimbres</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Secção total 3m de avanço</td>
<td>Geralmente não requer suporte, com exceção de pregagens ocasionais</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,0 a 1,5m de avanço, Suporte completo a 20m da frente.</td>
<td>Pregagens de 3m de comp., espaçadas de 2,5m, ocasionalmente com malha em certas zonas do tecto</td>
<td>50mm no tecto quando necessário</td>
</tr>
<tr>
<td></td>
<td>1,5-3m. Início do suporte após cada fogo, Suporte completo a 10m</td>
<td></td>
<td>Nenhum</td>
</tr>
<tr>
<td>II</td>
<td>Secção parcial (frente e rebaixo), avanço 1,0-1,5m. Instalação do suporte concomitantemente com a escavação</td>
<td>Pregagens sistemáticas com 4m de comp., espaçadas de 2m nas paredes e tectos, com malha no tecto</td>
<td>50-100mm no tecto 30 mm nas paredes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nenhum</td>
</tr>
<tr>
<td>III</td>
<td>Secção parcial (frente e rebaixo), avanço 1,0-1,5m. Instalação do suporte concomitantemente com a escavação</td>
<td>Pregagens sistemáticas com 4-5m de comp., espaçadas de 1-1,5m com malha no tecto e paredes</td>
<td>100-150mm no tecto 100mm nas paredes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cimbres leves a médios espaçados de 1,5m</td>
</tr>
<tr>
<td>IV</td>
<td>Secções múltiplas, avanço de 0,5-1,5m. Instalação do suporte com a escavação. Betão projectado logo após fogo</td>
<td>Pregagens sistemáticas com 5-6m de comp., espaçadas de 1-1,5m com malha no tecto e paredes. Pregagem na soleira</td>
<td>150-200mm no tecto 150mm nas paredes e 50mm na face</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cimbres médios a pesados espaçados de 0,75m. Fechaamento da soleira</td>
</tr>
</tbody>
</table>

A aplicação desta classificação requer no entanto que seja conhecida a litologia do maciço, que tenha ocorrido sondagens para aplicação do RQD, existindo também dificuldades em classificar a abertura de fendas e as condições hidrológicas. Esta classificação não considera também o processo construtivo nem o recobrimento da obra.

Por outro lado, a principal vantagem desta classificação centra-se no facto de ser baseada numa experiência vasta por considerar os principais fatores que definem a aptidão de um maciço para implantação de uma obra subterrânea.

3.2.3. Sistema GSI

Esta classificação baseia-se na hipótese de que a resistência do maciço depende não só das suas propriedades intacto, como do grau de liberdade que os blocos de rocha no seu seio têm para se moverem quando confrontados com alterações das condições de tensão.

Baseando-se em dados experimentais e na teoria de Alan Arnold Griffith (Teoria da fratura frágil), surge em 1980 o designado Critério de Resistência de Hoek e Brown. O mesmo relaciona as tensões principais efetivas de rotura máxima e mínima (σ'_1 e σ'_3) de uma dada
amostra de rocha intacta, com a sua resistência à compressão simples \((\sigma_c) \) e com uma constante \((m_i) \) através da seguinte expressão:

\[
\sigma'_1 = \sigma'_3 + \sigma_c \left(m_i \frac{\sigma'_3}{\sigma_c} + 1 \right)^{1/2}
\]

O valor da constante \(m_i \) pode ser determinado através de um conjunto de ensaios triaxiais para o tipo de rocha em questão, ou a partir de uma estimativa de valores (Figura 18) publicados por (Hoek, 1994).

Posteriormente, uma generalização da expressão anterior permitiu a sua aplicação a maciços rochosos, com a introdução de novos parâmetros que os caracterizam.

\[
\sigma'_1 = \sigma'_3 + \sigma_c \left(m_b \frac{\sigma'_3}{\sigma_c} + s \right)^{a}
\]
Para determinação de tais parâmetros, (Hoek, 1994) apresenta o índice GSI. Este fornece um valor qualitativo do maciço e pode ser calculado com base no valor resultante de RMR (Classificação de Bieniawski) através das seguintes expressões:

\[
GSI = RMR - 5, \text{ Caso o valor de RMR} \geq 23
\]

\[
GSI = \ln \left(\frac{RQD}{J_n J_d} \right) + 44, \text{ Caso o valor de RMR} < 23
\]

Tendo em conta os valores de RMR, a litologia e estrutura do maciço rochoso, o seu grau de perturbação e as condições apresentadas pelas superfícies de fracturação, o maciço é dividido em 4 classes que fornecem um intervalo de valores para este índice (Figura 19).

Figura 19: Classes qualitativas de GSI (Horgan, 2004)
CARACTERIZAÇÃO GEOLÓGICO-GEOTÉCNICA DOS MACIÇOS NA RAM

Após quantificado o valor de GSI pode-se então proceder à estimativa dos parâmetros do critério de rotura de Hoek e Brown (Hoek, et al., 2002). Para tal recorre-se às seguintes expressões:

\[
a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{GSI}{15} - e^{-\frac{20}{3}}} \right) \tag{9}
\]

\[
m_b = m_t e^{\left(\frac{GSI-100}{28-14\theta'}\right)} \tag{10}
\]

\[
s = e^{\left(\frac{GSI-100}{9-3\theta'}\right)} \tag{11}
\]

O novo parâmetro \(D\), varia entre 0 e 1 e é representativo do grau de perturbação induzido no maciço pelo processo de escavação. Através dos parâmetros do critério de rotura de Hoek e Brown, é possível então chegar aos valores dos seguintes parâmetros:

Resistência à compressão uniaxial \((\sigma_c,\text{mass})\)

\[
\sigma_c,\text{mass} = \sigma_c s^a \tag{12}
\]

Resistência à tração \((\sigma_t,\text{mass})\)

\[
\sigma_t,\text{mass} = -\frac{s \sigma_c}{m_b} \tag{13}
\]

Ângulo de atrito \((\theta')\)

\[
\theta' = \arcsin \left[\frac{6 a m_b \left(s + m_b \left(\frac{\sigma_{\text{3\max}}}{\sigma_c} \right)^{(a-1)} \right)}{2(1+a)(2+a) + 6 a m_b \left(s + m_b \left(\frac{\sigma_{\text{3\max}}}{\sigma_c} \right) \right)^a} \right] \tag{14}
\]
Coesão \(c' \)

\[
c' = \frac{\sigma_c (1 + 2a)s + (1 - a)m_b \left(\frac{\sigma \gamma_{\text{máx}}}{\sigma_c} \right)^a (s + m_b \left(\frac{\sigma \gamma_{\text{máx}}}{\sigma_c} \right)^a)}{(1 + a)(2 + a) \sqrt{1 + \left(6am_b \left(s + m_b \left(\frac{\sigma \gamma_{\text{máx}}}{\sigma_c} \right)^a \right)^a / (1 + a)(2 + a) } }
\]

\[(15)\]

Módulo de deformabilidade (\(E_M \))

\[
E_M = \left(1 - \frac{D}{2} \right) \frac{\sigma_c}{100} 10^{\frac{(GSI - 10)}{40}}, \text{ Para valores de } \sigma_c \leq 100\text{Mpa}
\]

\[
E_M = \left(1 - \frac{D}{2} \right) 10^{\frac{(GSI - 10)}{40}}, \text{ Para valores de } \sigma_c > 100\text{MPa}
\]

\[(16)\]

Estes autores assumem que a rocha exibe um comportamento isotrópico, sendo que este sistema não deve ser aplicado a maciços que apresentem um conjunto de descontinuidades mais fraco em comparação com os restantes e que apresentem blocos da mesma ordem de grandeza que a obra.

3.2.4. Classificação de Wickham, Tiedemann e Skinner – índice RSR (Rock Structure Rating)

Esta classificação visa obter uma descrição da qualidade do maciço. Foi desenvolvido a partir dum estudo levado a cabo em 53 túneis, e o seu objetivo principal é o de estimar o revestimento necessário à escavação de túneis, sendo designado de Modelo de Previsão do Suporte e do Terreno (Ground Support Prediction Model). O valor de RSR para qualquer secção genérica de um túnel, é obtida através da soma dos pesos atribuídos aos 3 parâmetros relacionados com o maciço em questão.

\[
RSR = A + B + C
\]

\[(17)\]

O primeiro parâmetro da equação (A) refere-se ao tipo de rocha enquanto o segundo (B) e o terceiro (C) são referentes ao espaçamento entre fraturas e ao caudal, respetivamente. O valor de RSR apresenta um valor mínimo de 25 e máximo de 100, sendo que à semelhança de
CARACTERIZAÇÃO GEOLOGÍCO-GEOTÉCNICA DOS MACIÇOS NA RAM

outras classificações, um maior valor de RSR corresponderá a uma melhor qualidade do maciço no que se refere à sua necessidade de suporte.

Por forma a relacionar o valor do índice RSR com o tipo de suporte, os mesmos autores apresentam um conceito denominado de RR (Rib Ratio) e ainda correlações entre RSR e inúmeros tipos de suporte como é o caso do betão projetado, cambotas e ancoragens.

É de salientar que como principais vantagens esta classificação apresenta uma correlação entre o índice calculado com vários tipos de suportes utilizados correntemente, e ainda tem em consideração o processo construtivo utilizado.

As suas desvantagens mais relevantes são o facto de não ter em consideração a profundidade a que se executa a obra nem a posição do nível freático.

3.2.5. Classificação de Manuel Rocha – índice MR

Classificação semelhante à de Bieniawski, que visa determinar a qualidade do maciço e as solicitações nos seus suportes aplicados, através de um índice MR, que resulta na soma de 4 características do maciço, às quais são atribuídas diversos pesos.

\[Mr = Pe + Ps + Pr + Pp \]
(18)

Onde:

- Pe - Espaçamento de fraturas;
- Ps - Sistema de fraturas;
- Pr - Resistência ao corte das fraturas;
- Pp - Percolação da água.

A partir do valor obtido para MR, é estimada/quantificada a necessidade de suporte para o maciço em questão segundo as 5 classes apresentadas na Tabela 6.
Tabela 6: Classes do maciço e necessidade de suporte

<table>
<thead>
<tr>
<th>Classe</th>
<th>MR</th>
<th>k</th>
<th>Necessidades de suporte</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>80 a 100</td>
<td>0 a 0,05</td>
<td>Esporádico no teto</td>
</tr>
<tr>
<td>II</td>
<td>60 a 80</td>
<td>0,05 a 0,3</td>
<td>Sistemático no teto</td>
</tr>
<tr>
<td>III</td>
<td>50 a 60</td>
<td>0,3 a 0,6</td>
<td>Sistemático no teto Esporádico nos pés-direitos</td>
</tr>
<tr>
<td>IV</td>
<td>30 a 50</td>
<td>0,6 a 0,9</td>
<td>Sistemático no teto e pés-direitos</td>
</tr>
<tr>
<td>V</td>
<td>0 a 30</td>
<td>0,9 a 1</td>
<td>Sistemático no teto e pés-direitos</td>
</tr>
</tbody>
</table>

Para além de se obterem as necessidades de suporte, tem-se acesso a um valor k através do qual é possível determinar o volume de rocha que irá solicitar os suportes aplicados na abóboda e hasteais.

As vantagens do uso desta classificação prendem-se com o facto de se tratar de uma qualificação baseada num número reduzido de parâmetros e de poder ser efetuado apenas com um estudo geológico de superfície. No que se refere às desvantagens, e à semelhança da classificação de Bieniawski, não considera a litologia do maciço nem o recobrimento da obra e apresenta dificuldade em aplicar o peso correto aos parâmetros relacionados com a resistência ao corte de fraturas e à percolação da água.

Numa última comparação com Bieniawski, podemos avaliar através da Tabela 7 as diferenças entre os tipos de suporte propostos por cada um dos autores.

Tabela 7: Comparação entre os tipos de suporte para Bieniawski e Rocha

<table>
<thead>
<tr>
<th>Tipo de Suporte</th>
<th>RMR</th>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muito pesado</td>
<td>< 20</td>
<td>< 30</td>
</tr>
<tr>
<td>Pesado</td>
<td>21-40</td>
<td>30-60</td>
</tr>
<tr>
<td>Médio</td>
<td>41-60</td>
<td>61-80</td>
</tr>
<tr>
<td>Ligeiro</td>
<td>61-80</td>
<td>81-90</td>
</tr>
<tr>
<td>Muito ligeiro ou nulo</td>
<td>> 80</td>
<td>> 90</td>
</tr>
</tbody>
</table>

Através da análise da Tabela 7, podemos afirmar que a classificação de Rocha é ligeiramente mais conservativa, resultando assim suportes mais pesados do que os propostos através do sistema de Bieniawski.

Apesar dos inúmeros métodos de classificação, é aconselhável não recorrer à utilização apenas de um em detrimento dos restantes mas sim promover uma análise que permita a comparação de resultados com origem nas diferentes classificações, obtendo um resultado final mais fiável.
CARACTERIZAÇÃO GEOLÓGICO-GEOTÉCNICA DOS MACIÇOS NA RAM

Independentemente da metodologia aplicada para o cálculo da qualidade do maciço, a monitorização do mesmo é essencial durante a execução da obra, de modo a que os dados que são obtidos possam permitir a adaptação do projeto às condições que se apresentam ao longo da obra.
Um dos maiores e mais comum problema de obras subterrâneas é a avaliação da estabilidade das aberturas. Esta avaliação é realizada recorrendo a várias metodologias, que muitas vezes necessitam de informações sobre as características mecânicas do maciço, assim como alguns parâmetros iniciais, como a tensão in situ. As medições de alguns parâmetros em certos casos não são possíveis, e noutros o seu grau de incerteza é elevado, levando a que a sua determinação seja efetuada por retroanálise.

Pode-se então afirmar que a retroanálise ou back analysis no fundo visa a obtenção de parâmetros (geomecânicos e outros) a partir da interpretação da medições realizadas durante a fase de escavação (deformações e/ou tensões) do meio causadas por uma determinada ação ou seja, permite por exemplo que através de dados recolhidos referentes aos descolamentos observados durante a fase de obra, possa ser possível determinar parâmetros como o módulo de elasticidade do maciço em questão (Mata, 2013) (Albernaz, 1997).

Um procedimento normal é a realização em fase de projeto de modelações com determinados parâmetros de entrada para prever o comportamento do maciço e da estrutura. Após a realização da obra, com as medições obtidas in situ, a retroanálise permite a realização de modelos que poderão validar os valores dos parâmetros assumidos em projeto, caso os seus resultados coincidam com as hipóteses admitidas (Vardakos, 2007).

As medições efetuadas antes e durante as escavações permitem estabelecer uma base de dados para proceder ao cálculo desses parâmetros. Após o início da obra e com as primeiras
escavações é possível então obter alguma informação, que pode ser manipulada para a criação e utilização em modelos simples, originando uma retroanálise eficiente (Gioda, et al., 1987).

A distinção das metodologias que a retroanálise utiliza para se sustentar difere de acordo com alguns autores, sendo que uns elaboram uma distinção de acordo com a sua abordagem e outros de acordo com a inversão ou não das equações de análise. No fundo podemos apontar duas metodologias, sendo que uma permite caracterizar a retroanálise como determinística ou probabilística, e a outra permite caracterizar como inversa ou direta.

No caso da abordagem probabilística ou determinística, deverá ser dado especial ênfase ao rigor das medições e à sensibilidade do modelo a erros provenientes destas.

Nas obras subterrâneas é frequente os parâmetros iniciais serem estimados ou possuírem nas suas medições um erro aceitável, devido ao grau de incerteza associado a estas obras e por não existir um controlo completo das medições. Neste caso deverá ser utilizada uma abordagem probabilística (Gioda, 1985).

Metodologicamente a retroanálise pode ser efetuada de outras duas formas:

Metodologia inversa - de maior complexidade, esta metodologia rege-se pela inversão de equações que moldam o comportamento da estrutura, ou seja, é definido o modelo para que os parâmetros originais do maciço sejam as incógnitas e a resposta sejam os dados que antes eram gerados a partir do modelo. A sua complexidade deve-se ao facto destes modelos se regerem por métodos numéricos como o método dos elementos finitos (MEF) e da inversão das equações pelas quais o comportamento da estrutura se rege.

A complexidade da metodologia resulta de muitas vezes não existir uma relação de linearidade entre a resposta do modelo com os parâmetros encontrados ou estes dependerem de inúmeros fatores pelo que a sua aplicação em problemas de engenharia incide sobre modelos simples.

Metodologia direta - dispensa a inversão de modelos matemáticos e opta pela criação de um modelo da estrutura que estuda o seu comportamento através da variação dos seus parâmetros por forma a chegar respetiva resposta.
A metodologia direta é então um processo iterativo através do qual estima-se os parâmetros relativos ao maciço e analisa-se a estrutura com o objetivo de obter uma resposta o mais realista e próxima dos dados observados em campo. Por ser um método um pouco por tentativa e erro, pode tornar-se num processo moroso, embora seja mais vantajoso quando se está trabalhando em modelos de elevada complexidade (Mata, 2013).

Algumas vantagens apontadas à utilização da retroanálise são a facilidade de se obterem módulos dos materiais nas reais condições de campo, de difícil reprodução em laboratório, a minimização da necessidade de proceder a dispendiosas recolhas de amostras e ensaios e a rapidez de caracterização do meio.

No entanto as suas desvantagens centram-se nos módulos retroanalisados não serem necessariamente os que são apresentados pelos materiais que compõem o meio, mas sim um valor equivalente do que poderão ser. Isto deve-se ao facto da sua dependência de diversos fatores intrínsecos ao maciço como a qualidade dos materiais, a sua homogeneidade, compactação, rigidez e fracturação (Albernaz, 1997).

4.1. MODELAÇÃO DE ESCAVAÇÕES SUBTERRÂNEAS

A construção de uma escavação subterrânea origina problemas de caráter tridimensional, devido ao alívio de tensões resultantes da escavação e da não linearidade dos solos, que manifestam-se através de deformações que podem ser significativas.

Um correto dimensionamento destas estruturas deverá contabilizar estas deformações e deverá proceder a uma análise cuidada com o auxílio de modelos que visam prever e compreender os comportamentos e mecanismos que surgem no local de implantação de obra (Maranha, et al., 2012).

Na previsão e análise com recurso à realização de modelos os principais parâmetros que se procuram conhecer estão relacionados com a estabilidade da frente de escavação, esforços instalados no suporte e movimentos e deformações induzidas pela escavação. Estes modelos devem o seu sucesso devido à capacidade de simular a sequência de escavação e o momento de colocação do suporte.

A precisão dos resultados com que se depara após análise dos modelos depende do modo como o programa é capaz de simular a sequência de escavação, pois o comportamento dos
AVALIAÇÃO DE PARÂMETROS GEOMECÂNICOS POR RETROANÁLISE

maciços quando submetidos a tensões de corte é dependente de fatores como o nível de estado de tensão e o histórico destas. Para além disso, a relevância em conseguir simular a colocação do suporte deve-se ao facto de através desta se tornar possível analisar as deformações e distorções presentes no maciço envolvente antes e depois da colocação destes (Sousa, 2005/06).

Os modelos a utilizar podem ser em 2D ou 3D sendo mais frequente a utilização de modelos 2D, devido à sua maior simplicidade de desenvolvimento. No entanto, a decisão da utilização de um modelo 2D em detrimento de um modelo 3D deve ponderar:

- O tamanho e complexidade do modelo, associado a imperfeições do programa ou do meio computacional utilizado que podem afetar negativamente o processo de cálculo dos resultados. O processamento de modelos complexos promove imprecisões e erros nos cálculos, além de gerarem resultados dependentes de inúmeros parâmetros que dificultam a sua interpretação.
- O custo inerente à realização de um modelo para análise tridimensional excede o associado a uma bidimensional. Este aumento de custos está relacionado com o facto de uma análise tridimensional necessitar de meios computacionais superiores e tempo de análise superior.

É frequente ser executada uma simulação das condições tridimensionais através de um modelo 2D (Uçer, 2006).

4.2. MODELOS 2D

A criação de um modelo para análise bidimensional é normalmente utilizado para estudo de tensões e deslocamentos na rocha em contorno da zona de escavação de um túnel.

Embora as tensões que se geram neste tipo de obras sejam de natureza tridimensional, a modelação e definição realística no que se refere a tensões, deslocamentos e estudo dos suportes “obrigaria” à criação de modelos 3D. No entanto, em situações de menor complexidade (geológica, de tensões ou de geometria) a aproximação a 2D simplifica o processo de modelação e origina resultado mais aceitáveis. O aconselhável será mesmo realizar a análise através de modelos 2D e através da observação dos resultados destes ponderar se será adequado a elaboração de um modelo 3D (Hoek, 2000).
A criação dos modelos 2D depende muito do nível de informação que é facultada em termos da realidade que é apresentada em campo. Mesmo na ausência de dados que apresentem boa qualidade, através da modelação tanto de modelos 2D como de modelos 3D, torna-se possível proceder a um estudo de previsão do comportamento do terreno, sempre com o reconhecimento de serem ponderadas as suas limitações ao nível dos resultados, pois estes dependem não só da modelação efetuada mas também dos dados recolhidos.

A qualidade dos dados recolhidos em campo será então um fator do qual dependerá o sucesso do modelo. O investimento efetuado durante a recolha de dados de campo ditará o comportamento e fiabilidade do modelo a criar, sendo que, enquanto uma recolha de dados com maior precisão acarretando custos superiores permitirá uma modelação com uma previsão mais realista, uma recolha de dados insuficientes sobre a qual o investimento é mínimo produzirá um modelo que apenas servirá para realizar e estudar várias previsões dum série de possibilidades de casos que ocorrerão em obra (Uçer, 2006).

Estas razões combinadas com o facto de existirem erros na formulação ou criação dos modelos fazem com que os programas de modelação produzam resultados que devem ser encarados com prudência e pragmatismo, pois necessitam de afinações e correções ao longo do tempo, sendo aconselhável questionar e interpretar atenciosamente os resultados provenientes das análises dos modelos, para além da criação de várias simulações da cada modelo com os casos de maior probabilidade de ocorrência (Uçer, 2006).

4.2.1. Metodologia adotada na criação do modelo

As obras de carácter subterrâneo, como são os casos dos túneis, impõem que se recorra a diversas ferramentas e metodologias de modo a ultrapassar o elevado grau de incerteza geotécnico associado a este tipo de obras.

Segundo (Uçer, 2006) de modo a que a conceção e análise dos modelos seja concretizada com sucesso, devem ser seguidos um conjunto de passos que são genéricos para qualquer tipo de programa a utilizar para criação destes:

1. Definição do objetivo para o qual o modelo será criado

 A definição do objetivo para o qual o modelo será criado influenciará o detalhe com que se procura efetuar a sua análise. Não é aconselhável que se procure modelar um
AVALIAÇÃO DE PARÂMETROS GEOMECÂNICOS POR RETROANÁLISE

sistema com um elevado grau de complexidade, mesmo que se detenha ferramentas para tal, se só se procura uma simples análise do mesmo, pelo que é aconselhado a criação de um modelo simples e com o aumento da sua complexidade então proceder a um refinamento do mesmo.

2. Criação de uma imagem do sistema físico
A importância da criação de um sistema físico deve-se ao facto de ser nesta fase que se tenta passar para o modelo toda a realidade com que se depara em campo. É através da criação desta imagem do sistema que se opta por certos parâmetros em detrimento de outros, como o comportamento do modelo, limites do meio a considerar, influência da presença de estruturas à superfície, a malha que discretiza o meio e mais importante se se põe a necessidade de criação de um modelo 3D ao invés de um modelo 2D.

3. Construção e execução do modelo simples
A criação de um modelo inicial simples será uma ajuda na detecção precoce de erros ou deficiências que poderão ser corrigidas antes de avançar para um nível de complexidade superior no modelo. Alguns dos erros que são passíveis de detetar nesta fase e que mais tarde influenciarão conforme se aumenta a complexidade do modelo estão relacionados com a introdução de dados e erros de condições de fronteira do modelo. A criação de um modelo simples muitas vezes fornece dados consideráveis aproximados. No caso de um modelo mais refinado apresentar mais tarde resultados muito diferentes, cabe ao analista proceder a uma análise da razão para tal discrepância.

Muito frequentemente a primeira análise revela insuficiências, sendo necessárias uma ou mais revisões. Em vez de considerá-las como correção de falhas, deve-se considerar a revisão destas como etapas de uma investigação que procede o refinamento de um modelo mais complexo. (Cook, et al., 1989)

4. Inserção de dados relativos ao problema
A introdução dos dados nesta fase é efetuada com um detalhe mais elaborado e rigoroso, procurando ao máximo que a informação disponível permita recriar com a máxima precisão a realidade do que se passa em campo. São inseridos os dados relativos à geometria da escavação, à topografia, aos parâmetros comportamentais do solo, às tensões e condições do maciço e a carregamentos externos. Quando existem algumas dúvidas referentes aos valores a inserir o modelo anteriormente criado
ajudará na escolha dos mesmos num intervalo de valores que recriará com maior realidade o comportamento da estrutura.

A grande discrepância entre rigidezes de elementos, uma má escolha da malha ou de coeficientes de Poisson pode revelar mais tarde problemas de deformação e instabilidade. É necessário ter em atenção tais fatores, pois por vezes os programas podem atribuir rigidezes a juntas de elementos que não correspondem à realidade, o que mais tarde poderá degradar seriamente os resultados. (Cook, et al., 1989)

5. Preparação de um modelo detalhado

Como referido anteriormente, o detalhe e rigor de um modelo dependerá do objetivo com que este é criado aliado a vários fatores relacionados com as informações que são inseridas neste. Quanto mais complexo for o modelo maior o tempo investido na sua produção e na sua análise.

Se se estiver perante um modelo mal estruturado, um refinamento da malha deste pode tornar os resultados piores em vez de os melhorar.

6. Execução do cálculo do modelo

Completa a fase de modelação o modelo deve ser executado, de preferência mais do que apenas uma vez, de modo a que caso surjam alguns problemas decorrentes da sua modelação possamos proceder à sua modificação afim deste apresentar o comportamento mais indicado para os objetivos traçados.

Antes da sua execução um modelo deverá ser analisado, preferencialmente por um analista que não o que estava diretamente envolvido na sua preparação dando lugar a uma análise mais objetiva (Cook, et al., 1989).

7. Análise e apresentação dos resultados

Os resultados obtidos devem ser interpretados e comparados com outros da mesma natureza por forma a detetar algum comportamento irregular ou não esperado que ocorra devido a algum erro ou deficiência do modelo. Cabe ao analista antecipar os resultados e conhecer o real objetivo da modelação. Se os prováveis resultados podem ser antecipados, um modelo mais barato e melhor pode ser elaborado.

Para melhor interpretação dos resultados os programas de modelação fornecem os resultados através de ilustrações e gráficos favorecendo assim a sua discussão e comparação. Para além disso a sua visualização gráfica torna relativamente fácil a deteção de erros grosseiros como nós mal colocados ou elementos em falta (Cook, et al., 1989).
4.3. MODELOS 3D

A metodologia inerente à criação de um modelo 3D segue as mesmas diretrizes que a do modelo 2D, sendo também maioritariamente efetuada com recurso a programas com base no Modelo de Elementos Finitos (MEF).

As tensões e deslocamentos num plano, normal ao eixo de abertura, não são influenciados pelas extremidades da abertura escavada desde que estas estejam afastadas o suficiente. No entanto se estivermos perante uma escavação com recurso a tuneladoras, o efeito desses deslocamentos não pode ser ignorado, pelo que nesse caso será mais adequado realizar um modelo 3D para estudo das tensões e deslocamentos envolventes à abertura (Hoek, 2000).

A modelação 3D com base no MEF é considerada especialmente no caso de se apresentarem condições geológicas e de projetos complexos, ou seja, os custos inerentes a grandes obras requerem que as suas condições sejam analisadas com maior detalhe.

Normalmente são efetuados estes modelos para túneis em que o seu suporte é aplicado com algum atraso após realização da escavação pois apresentam maiores facilidades na sua modelação do que túneis escavados sobre a proteção de escudos. A razão desta preferência reside no fato de tridimensionalmente tornar-se um obstáculo a modelação de parâmetros afetos ao escudo, bem como as forças de reação provenientes dos macacos, os vazios que se proporcionam entre o suporte e o terreno aquando do avanço do escudo, a injeção de caldas sobre pressão e o tempo que estas levam a ganhar a resistência pretendida.

De modo a ultrapassar estas dificuldades muitas vezes recorre-se à variação dos parâmetros de rigidez dos elementos que compõem a malha que discretiza o meio. Para simulação do escudo e impedimento de deslocamentos no contorno da escavação pode-se recorrer à criação de elementos cilíndricos de elevada rigidez e para simular os vazios que ocorrem entre o suporte e o terreno podem-se usar elementos de baixa rigidez, permitindo os seus deslocamentos, para posteriormente aumentarmos a sua rigidez quando considerarmos o ganho de presa da calda injetada (Sousa, 2005/06).

A criação de modelos 3D possibilita a caracterização dos esforços tridimensionais que se estabelecem nas estruturas geotécnicas reais, com foco para as zonas contíguas à frente de escavação (Martins, et al., 2003).
ESTUDO GEOMECÂNICO DO TÚNEL DO CORTADO NA ILHA DA MADEIRA

A sua utilização é mais procurada quando as suas capacidades podem ser otimizadas podendo tirar partido destas em relação aos modelos 2D. Algumas dessas capacidades devem-se aos seguintes factos:

- Através destes modelos é mais fácil visualizar as fases de escavação, permitindo melhores tomadas de decisões na resolução de problemas inerentes a estas e ao desenvolvimento da obra;
- A modelação de um projeto simples em 3D permite uma boa visão do comportamento que a estrutura deverá apresentar tanto na elaboração do modelo mais refinado como na realidade;
- Os programas de modelação em 3D permitem, à semelhança dos programas de modelação em 2D, a elaboração dos desenhos necessários para obra bem como folhas de grande detalhe relacionadas com quantidades/características/custos dos materiais a empregar;

Para além das vantagens enunciadas atrás, devido à melhor visualização de todo o projeto de escavação nestes modelos, há possibilidade de corrigir erros que não podem ser analisados em modelos 2D e através das suas correções organizar melhor o projeto reduzindo assim custos e tempo de execução (Alves, 2010).

A principal dificuldade inerente a este tipo de modelos reside principalmente na definição da malha de elementos finitos, devido ao processo de gerar a malha ideal durante a simulação das várias fases de escavação e instalação do suporte nas geometrias pretendidas (Guedes de Melo, 2002).

Em conclusão, os modelos 2D continuam a ser um recurso muito mais utilizado devido à sua relação custo/análise, sendo que os modelos 3D são maioritariamente utilizados em projetos geotécnicos de grande dimensão e complexidade. A criação e análise destes modelos em detrimento dos modelos 3D devem-se principalmente aos seguintes fatores:

- As análises tridimensionais apresentam maiores dificuldades no que respeita à sua modelação e recriação da sua geometria;
- As análises de resultados dos modelos 3D embora mais realistas, são mais complexas e exigem um tempo de cálculo e ferramentas computacionais superiores;
As análises bidimensionais são normalmente mais conservativas mas apresentam uma razoável correspondência entre a sua análise e o real comportamento do maciço (Santos Josefino, et al., s.d.).

4.4. MODELAÇÃO PHASE 2D

Os programas que permitem realizar estes modelos são na realidade programas que apresentam um número finito de componentes manipulados através de equações matemáticas. Estes problemas encontram solução através de diversos métodos numéricos entre os quais se destacam três:

- Método dos Elementos Finitos (MEF);
- Método das Diferenças Finitas (MDF);
- Métodos dos Elementos de Contorno (MEC).

Para proceder à modelação neste caso, recorreu-se ao programa da Rocscience Phase2. Este programa com base no MEF é composto por uma gama de ferramentas para a modelação geotécnica, permitindo a criação de modelos, análise e avaliação de uma vasta gama de problemas como por exemplo interações maciço/suporte (Rocscience, 2014).

O MEF é um procedimento numérico para análise de problemas complexos que não encontram solução satisfatória por métodos analíticos clássicos, pelos seus resultados serem raramente exatos. No entanto, com o MEF os erros são reduzidos através do processamento de um número maior de equações, permitindo resultados suficientemente precisos para fins de engenharia a um custo razoável (Cook, et al., 1989).

O poder do MEF reside principalmente na sua versatilidade, sendo que este método pode ser aplicado a vários problemas físicos. O problema pode apresentar elementos com formas arbitrárias e as malhas podem discretizar elementos de diversas formas e propriedades. Os dados de entrada a inserir são referentes ao tipo de problema, à sua geometria, condições de contorno, secção de elementos, etc. (Cook, et al., 1989).

Durante a modelação algumas dificuldades a enfrentar pelo modelador típico é o não entendimento da ação física e das condições de contorno, bem como as limitações das teorias aplicadas bem o suficiente para preparar um modelo satisfatório. Outra dificuldade é a não
compreensão do comportamento dos vários elementos, opções e limitações do programa bem o suficiente para fazer uma escolha inteligente entre elas. Estas limitações podem originar resultados fracos, sendo que o modelo poderá não mostrar os detalhes relevantes do problema a analisar. Cabe então ao modelador entender fisicamente o comportamento do problema o suficiente para fazer uma escolha inteligente dos elementos à sua disposição, inclusive a malha (Cook, et al., 1989).

A análise de problemas geotécnicos através deste programa envolve 3 etapas gerais sugeridas por (Zienkiewicz, et al., 2000):

- Introdução dos dados e criação de um modelo;
- Análise do modelo/solução;
- Análise dos resultados.

No MEF o meio é considerado como contínuo e idealizado como um conjunto de elementos finitos com nós específicos, sendo o número infinito de graus de liberdade do meio substituídos por incógnitas nos nós. Tendo em consideração o atrás referido, procede-se à discretização que não é mais que a criação de uma malha composta por um número finito de elementos constituídos por pontos nodais, que se estendem até uma extensão onde os esforços atuantes da escavação sejam significativos. Considerar o maciço como um meio contínuo permite ter em conta as descontinuidades de diferentes naturezas, presentes neste (Ghali, et al., 2009).

Os elementos constituintes da malha podem apresentar diversos graus que dependerão do número de nós a serem definidos com a consideração de que, quanto maior o número de pontos nodais mais detalhada será a análise. É aconselhável tornar a malha mais refinada e com uma maior densidade de pontos em determinadas regiões por forma a se dispor de resultados mais rigorosos e acentuados, como é o caso das regiões em torno da cavidade escavada.

Realizada a discretização do meio, são inseridas as informações relativas ao maciço como o seu peso específico, o módulo de elasticidade, estado de tensão inicial e parâmetros de contorno. Cada material tem associado as suas propriedades, por exemplo em materiais lineares isotrópicos o módulo de Young e Poisson descrevem os seus parâmetros em estado isotrópico. Na maioria das vezes os vários elementos não apresentam as mesmas propriedades
AVALIAÇÃO DE PARÂMETROS GEOMECÂNICOS POR RETROANÁLISE

pelo que é necessário especifica-las para cada material individualmente (Zienkiewicz, et al., 2000).

Com os parâmetros do maciço definidos, procede-se à construção da geometria da escavação e à inserção das informações de projeto como o faseamento com que a escavação é executada e as características dos suportes que são aplicados. A seleção do tipo de análise desejada, o número máximo de interações e o erro que se considera aceitável para os resultados são definidos também nesta fase.

Uma vez que toda a informação relativa à geometria, às propriedades dos materiais e às condições de tensões e cargas estejam completas, é altura de iniciar a análise do modelo/solução adotada.

Através da ligação formada por pontos da malha que discretiza o meio, será formulado um complexo problema matemático com cariz matricial que tem em conta a rigidez, os deslocamentos e as forças dos elementos que compõe a malha. Assim, a redistribuição de tensões, as deformações e outros parâmetros são calculados através das condições iniciais impostas e das ações que foram introduzidas ao longo da criação do modelo (Uçer, 2006).

Terminada a análise, é possível visualizar em variadíssimos gráficos os dados em função de parâmetros como deslocamentos, trajetórias de tensões, deformadas, zonas plastificadas e outros.

A vantagem dos programas baseados no MEF é que permitem simular as diversas etapas da escavação, as condições heterogêneas do maciço e dos materiais, as variadas geometrias, as características que ocorrem ao longo de uma obra de caráter subterrâneo e o seu poder de simular complexas leis constitutivas, tornando o MEF dos métodos mais utilizados no campo da engenharia para análise destes tipos de modelos (Chissolucombe, et al., 2011).

No entanto, a análise bidimensional revela algumas desvantagens devido às dificuldades que se devem principalmente a modelar corretamente o processo construtivo, mais precisamente a deformação que ocorre no maciço antes da colocação do suporte. Esta deformação é de importante análise pois é responsável por reduzir o carregamento sobre os suportes, não levando por exemplo a um sobredimensionamento destes.
Além disso, são apontadas outras desvantagens que relacionam-se com o facto de os resultados serem dependentes de inúmeras variáveis podendo por vezes ser de difícil compreensão e do MEF não ser o mais indicado no caso de se tratar de simular grandes deslocamentos (Wang, et al., 2012).
CAPÍTULO 5 - TÚNEL DO CORTADO. DESCRIÇÃO GERAL E ASPETOS CONSTRUTIVOS

5.1. LOCALIZAÇÃO E GEOMETRIA

Figura 20: Localização do Túnel do Cortado (Bandeira, 2008)

Trata-se de um túnel rodoviário bidirecional, composto por uma plataforma 1 x 2 vias, com uma extensão de 3168m, com emboquilhamento Sul na zona do Faial e o emboquilhamento Norte na zona de Santana.
Este túnel é composto por um primeiro túnel correspondente ao Túnel do Faial e um segundo correspondente ao Túnel do Cortado (Figura 21). O túnel I (Faial) é composto por 2 ramos, A e B respetivamente, sendo o ramo B o único onde ocorre circulação e através do qual se efetua a ligação rodoviária com o túnel II (Cortado).

A razão pela qual o ramo A do túnel I encontra-se desativado deve-se ao facto do traçado do túnel ter sofrido alterações durante a sua execução, sendo abandonado o antigo troço que previa um emboquilhamento na Ribeira do Guindaste e do qual faziam parte as frentes de escavação descontinuadas e denominadas como T2F1a e T2F1b. (Horgan, 2004).

Através da consulta no Apêndice A é possível observar a alteração de traçado sofrida, bem o zonamento geotécnico e as cotas de implantação e do terreno ao longo do túnel.

Figura 21: Traçado inicial do Túnel do Cortado (GRID; CENORPLAN)
Devido à sua grande extensão é apoiado por 5 galerias de emergência implantadas ao longo do seu percurso, que servem para a evacuação de peões e acesso a viaturas de emergência. Apenas 2 das 5 galerias não dispõem de uma plataforma ao ar livre que permita acesso para saída de peões ou veículos.

A sua secção corrente (Figura 22a) apresenta uma largura útil de 9,6m com a seguinte distribuição:

- Uma faixa de rodagem a que correspondem 7,00m de largura, com uma via em cada sentido com 3,50m cada;
- Duas bermas pavimentadas com 0,30m de largura;
- Dois passeios com 1,00m de largura.

Nas zonas onde ocorre mais uma via para desaceleração ou aceleração a faixa de rodagem da secção ganha 3,50m de largura (Figura 22b). Na divergência entre ramos que ocorre da transição do túnel I para o túnel II, a secção apresenta a sua largura máxima de 20,42m (Figura 23a).
O perfil transversal tipo considerado para as galerias de evacuação de emergência apresenta uma faixa de rodagem com uma largura livre de 5,00m, que estabelece a ligação direta com as plataformas exteriores (Figura 23b). As suas secções podem apresentar, ou não revestimento em toda a sua extensão, dependendo das características dos terrenos atravessados.

5.2. CARACTERIZAÇÃO GEOLÓGICO-GEOTÉCNICA

Os materiais atravessados pela construção do túnel pertencem maioritariamente ao Complexo Vulcânico Pós-Miocénico, contendo principalmente grandes massas de derrames lávicos com alternâncias de material tufóide e massas brechóides.

Através dos parâmetros litológicos, estruturais e mecânicos dos materiais encontrados, foi definido em fase de projeto, um zonamento geotécnico que resultou em 4 classes, de acordo com o apresentado na Tabela 8.
Tabela 8: Zonamento Geotécnico

<table>
<thead>
<tr>
<th>Zonas Geotécnicas</th>
<th>Tipo litológico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alteração (W)</td>
</tr>
<tr>
<td></td>
<td>Zona geotécnica</td>
</tr>
<tr>
<td>Descricão</td>
<td></td>
</tr>
<tr>
<td>Formações lávicas basálticas compactam, pouco alteradas a sãs.</td>
<td>W2-1</td>
</tr>
<tr>
<td>Formações lávicas basálticas fraturadas, medianamente a pouco alteradas.</td>
<td>W3-4</td>
</tr>
<tr>
<td>Formação piroclásticos brechóides, compactas, medianamente a pouco alteradas.</td>
<td>W3-2</td>
</tr>
<tr>
<td>Formações piroclásticos brechóides, desagregáveis quando expostas, em geral lenticulares com alto índice de vazios.</td>
<td>W4-3</td>
</tr>
<tr>
<td>Formações piroclásticas de tufos, compactos, medianamente a muito alterados por vezes com bombas vulcânicas.</td>
<td>W3-4</td>
</tr>
<tr>
<td>Formações piroclásticas de tufos desagregáveis quando expostas, muito alteradas a decompostas por vezes com bombas vulcânicas.</td>
<td>W4-5</td>
</tr>
</tbody>
</table>

De seguida apresenta-se uma descrição mais pormenorizada das características de cada zona geotécnica definida na fase de construção.

- **Zona Geotécnica 1 (ZG1)**

 Esta zona compreende os basaltos compactos e brechas compactas, ou seja, materiais de elevada resistência, homogéneos e que a estabilidade não tem probabilidade de ser prejudicada devido à ausência fracturação.

 Esta zona geotécnica acabou por não se revelar durante o processo de escavação pois os materiais intersetados apresentavam alguma fracturação, para além de mostrarem-se por vezes pouco resistentes e muito deformáveis. (Horgan, 2004)

- **Zona Geotécnica 2 (ZG2)**

 Nesta zona apresentaram-se maciços com uma estrutura heterogénea e complexa. A sua constituição contém rochas resistentes, como o caso de basaltos fraturados intercalados por vezes por brechas desagregadas, tufos compactos ou desagregados.

 Esta zona geotécnica acabou por ser a predominante durante o processo de escavação, correspondendo a cerca de 75% do troço.
Zona Geotécnica 3 (ZG3)
Constituída predominantemente por maciços de formações friáveis e fraca coesão, demonstrando rochas de fraca resistência e solos compactos ou pouco consolidados, apresentando portanto má qualidade.

Zona Geotécnica 3* (ZG3*)
Zona com constituição idêntica à ZG3, mas com o maciço a apresentar trechos com elevado estado de alteração, exibindo formações descomprimidas e verificando-se percolação de águas.

Zona Geotécnica 4 (ZG4)
À semelhança da ZG1, não se verificou durante o processo de escavação os materiais a que esta zona se refere. No entanto estes grupos estão incluídos os tufos desagregados, humedecidos e com compacidade variando entre média e fraca.

Embora na fase de projeto tenham sido definidos o zonamento geotécnico descrito anteriormente, na fase de execução apenas foram identificadas as zonas ZG2, ZG3 e ZG3*, conforme ilustrado no Apêndice A onde pode ser consultada a planta final do túnel com a definição do zonamento geotécnico adotado em obra.

A classificação geomecânica do maciço rochoso atravessado foi efetuada com recurso às classificações de Bieniawski ou RMR (Rock Mass Rating) e GSI (Geological Strength Index). Através destas foram obtidos intervalos para os valores de RMR e GSI para as diferentes zonas geotécnicas, que se apresentam de forma resumida na Tabela 9.

<table>
<thead>
<tr>
<th>Zona Geotécnica</th>
<th>Intervalo para RMR</th>
<th>Intervalo para GSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZG2</td>
<td>21 a 53</td>
<td>16 a 50</td>
</tr>
<tr>
<td>ZG3</td>
<td>17 a 45</td>
<td>15 a 42</td>
</tr>
<tr>
<td>ZG3*</td>
<td>21 a 31</td>
<td>16 a 28</td>
</tr>
</tbody>
</table>

No Apêndice B pode ser consultada a informação detalhada para cada secção instrumentada.
5.3. PROCESSO CONSTRUTIVO

5.3.1. Métodos de Escavação

A escavação deste túnel foi realizada de forma faseada, com a frente de escavação à pressão atmosférica e com a colocação dos suportes conforme o avanço da escavação.

Com base nas características do maciço foi adotado um faseamento para cada zona geotécnica sendo que, quanto mais deformáveis e menos resistente fossem os materiais encontrados, mais faseada teria que ser a escavação. Para além das características resistentes do maciço, as dimensões e geometria das secções do túnel foram também condicionantes no faseamento utilizado.

De seguida é apresentado o faseamento adotado para as zonas geotécnicas atravessadas em obra, tanto para secção corrente como em secção de alargamento.

- **Faseamento de execução para a zona ZG2 em secção corrente:**
 1. Escavação da meia secção superior (abóboda) e aplicação do sustimento por avanços com 2,00m de desenvolvimento máximo (Secção 1 da Figura 24 a);
 2. Desmonte da parte inferior (hasteais) e aplicação eventual do sustimento por avanços com 2,00m de desenvolvimento máximo, garantindo uma distância mínima à frente de escavação de 20m (Secção 2 da Figura 24 a);
 3. Betonagem das sapatas e parte inferior do revestimento;
 4. Betonagem do revestimento (hasteais e abóbodas).

- **Faseamento de execução para a zona ZG3 em secção corrente:**
 1. Escavação da meia secção superior (abóboda) e aplicação do sustimento por avanços com 1,00m de desenvolvimento máximo (Secção 1 da Figura 24 b);
 2. Desmonte da parte inferior (hasteais) e aplicação do sustimento por avanços com 1,00m de desenvolvimento máximo, garantindo uma distância mínima à frente de escavação de 20m (Secção 2 da Figura 24 b);
 3. Betonagem das sapatas e parte inferior do revestimento;
 4. Betonagem do revestimento (hasteais e abóbodas).
Faseamento de escavação a) Zona ZG2; b) Zona ZG3

Faseamento de execução para a zona ZG3 em secção de alargamento com aplicação de cambotas HEB180:

1. Escavação do contorno da meia secção superior, com um avanço de 1,00m, deixando uma banqueta central com 1,00m na frente, e aplicação imediata do sustimento (Secção 1 e 2 da Figura 25);
2. Escavação do contorno da meia secção superior, com um avanço de 1,00m, ficando a banqueta central com 2m na frente, e aplicação imediata do sustimento (Secção 1 e 2 da Figura 25);
3. Escavação da banqueta central da meia secção superior, com um avanço de 1,00m, ficando a banqueta com 1,00m (Secção 3 da Figura 25);
4. Escavação do caixão central, na meia secção inferior, com um avanço de 4,00m garantindo sempre um afastamento mínimo de 40m em relação à frente de escavação da meia secção superior (Secção 4 da Figura 25);
5. Escavação da banqueta lateral esquerda, com um avanço de 1,00m e aplicação imediata de sustimento, garantindo sempre um afastamento mínimo de 2,00m em relação ao caixão central (Secção 5 da Figura 25);
6. Escavação da banqueta lateral direita, com um avanço de 1,00m e aplicação imediata do sustimento, garantindo sempre um afastamento mínimo de 2,00m em relação à banqueta esquerda (Secção 6 da Figura 25);
7. Betonagem das sapatas e da parte inferior do revestimento;
8. Betonagem do revestimento (Hasteais e abóboda).

Figura 25: Faseamento de escavação em zona ZG3 em secção de alargamento com aplicação de cambotas HEB180

➢ Faseamento de execução para a zona ZG3 em secção de alargamento com aplicação de cambotas HEB200 e HEB220:

1. Escavação da galeria central superior em secção plena, por avanços de 2,00m de desenvolvimento máximo e aplicação imediata do sustimento (Secção 1 da Figura 26);
2. Escavação do alargamento lateral esquerdo da meia secção superior, por avanços de 1,00m de desenvolvimento máximo e aplicação imediata do sustimento na abóboda de túnel, garantindo sempre um afastamento mínimo de 4,00m em relação à frente de escavação da galeria central superior (Secção 2 da Figura 26);
3. Remoção do sustimento do hasteal da galeria central superior escavada (Secção 2 da Figura 26);
4. Escavação do alargamento lateral direito da meia secção superior, por avanço de 1,00m de desenvolvimento máximo e aplicação imediata do sustimento na abóboda do túnel (Secção 3 da Figura 26);
5. Remoção do sustimento do hasteal da galeria central superior escavada (Secção 3 da Figura 26);
6. Escavação do caixão central, por avanço de 6,00m de desenvolvimento máximo, garantindo sempre um afastamento mínimo de 40,0m em relação à
frente de escavação do alargamento lateral direito da secção superior (Secção 4 da Figura 26);
7. Escavação da banqueta lateral esquerda, por avanço de 1,00m de desenvolvimento máximo e aplicação imediata do sustimento no hasteal do túnel (Secção 5 da Figura 26);
8. Escavação da banqueta lateral direita, por avanços de 1,00m de desenvolvimento máximo e aplicação imediata do sustimento no hasteal do túnel (Secção 6 da Figura 26);
9. Betonagem das sapatas e da parte inferior do revestimento definitivo;

Figura 26: Faseamento de escavação para a zona ZG3 em secção de alargamento com aplicação de cambotas HEB200 e HEB220

5.3.2. Suportes Primários

Os suportes primários utilizados em cada secção do túnel foram definidos de acordo com as zonas geotécnicas apresentadas pelo maciço, embora tenham sido utilizadas soluções diferentes entre os túneis I e II nas zonas ZG2 e ZG3.

- Zona geotécnica ZG2 do túnel I
 Para esta zona a solução prevista em projeto consistia na aplicação ao longo das abóbodas e hasteais de pregagens sistemáticas do tipo super Swellex (Figura 27a) com 6m de comprimento afastadas de 1,50m x 2m em quincâncio associadas a betão projetado com 15cm e espessura incorporando fibras metálicas.
Zona geotécnica ZG2 do túnel II

Em secção corrente o projeto contemplava a aplicação na zona da abóboda de pregagens sistemáticas do tipo Swellex (Figura 27a) com 4m de comprimento, afastadas de 2m em quincôncio, associadas a betão projetado com 5cm de espessura incorporando fibras metálicas. No caso de serem encontradas zonas de menor qualidade seria aplicada uma segunda camada de 5cm de betão projetado. Em relação aos hasteais, seriam também aplicados 5cm de betão projetado incorporando fibras metálicas, nas zonas do maciço que mostravam menor qualidade.

Em secção de alargamento, a solução aplicada nas abóbodas e hasteais consistia em pregagens sistemáticas do tipo super Swellex, com 6m de comprimento afastadas de 1,5m x 2m em quincôncio associadas a betão projetado com 10cm de espessura nas secções de alargamento variável e 15cm nas de alargamento constante, incorporando fibras metálicas.

A zona ZG2 foi a verificada na maior parte do trajeto, representando 75% da escavação (cerca de 2326m), localizando-se entre os seguintes Pk’s:

do 0+469.6 ao 0+566.6 (TU);
do 0+669.6 ao 1+122.3 (TU);
do 1+122.3 ao 2+836.4 (TU);
do 2+854.8 ao 2+917.1 (TU).

Zona geotécnica ZG3 do túnel I

O projeto consistia em aplicar nas abóbodas e hasteais cambotas metálicas (Figura 27b) do tipo HEB (HEB180 entre os kms 0+531,58 e 0+551,58 (TU), HEB200 entre os kms 0+606,58 e 0+669,58 (TU) e HEB220 na restante zona geotécnica ZG3 afastadas de 1m, rede electrossoldada AQ50 e 20cm de betão projetado. Em zonas de potencial instabilidade localizada da abóboda seriam aplicadas chapas metálicas com 5mm de espessura eventualmente cravadas em avanço.

Zona geotécnica ZG3 do túnel II

Em secção corrente, seriam também aplicados os mesmos suportes na zona da abóboda e dos hasteais, ou seja, aplicar-se-iam cambotas metálicas (Figura 27 b) do
TÚNEL DO CORTADO. DESCRIÇÃO GERAL E ASPETOS CONSTRUTIVOS

tipo HEB160 ou equivalente, afastadas de 1m, rede electrossoldada AQ50 e 10cm de betão projetado. Novamente, em zonas de potencial instabilidade localizada da abóboda, recorrer-se-ia à aplicação de chapas metálicas com 5mm de espessura eventualmente cravadas em avanço.

Em secção de alargamento a solução seria a aplicação nas abóboda e hasteais de cambotas metálicas do tipo HEB180 ou equivalente, afastadas de 1m, rede electrossoldada AQ50 e 10 cm de betão projetado. Em zonas de potencial instabilidade localizada da abóboda seriam aplicadas chapas metálicas com 5mm de espessura eventualmente cravadas em avanço.

A zona ZG3 foi verificada ao longo de 23% do total da escavação (cerca de 725.5m), com localização entre os seguintes Pk’s:

do 0+037.5 ao 0+333.8 (TU);
do 0+333.8 ao 0+469.6 (TU);
do 0+566.6 ao 0+669.6 (TU);
do 2+836.4 ao 2+854.4 (TU);
do 2+943.1 ao 3+138.6 (TU).

Figura 27: Secção tipo a) com pregagens b) com cambotas (GRID; CENORPLAN)

- Zona geotécnica ZG3* do túnel II

Em secção corrente, a solução passaria pela aplicação de cambotas metálicas do tipo HEB160 ou equivalente, afastadas de 0,50m, rede electrossoldada AQ50 e 15cm de
betão projetado. Também nesta zona, em locais de potencial instabilidade localizada da abóboda recorrer-se-iam à aplicação de chapas metálicas com 5mm eventualmente cravadas em avanço. Devido a fraca qualidade do maciço nesta zona, seriam ainda aplicadas enfilagens em tubo metálico SCH Ø73, providas de manchetes espaçadas de 1m, com 6m de comprimento e com afastamento máximo de 0,30m, dispostas ao longo do perímetro exterior das cambotas. Em secção de alargamento na abóboda e hasteais seriam aplicadas cambotas metálicas do tipo HEB180 ou equivalente, afastadas de 0,50m, rede electrossoldada AQ50 e 15cm de betão projetado. Dispostas ao longo do perímetro exterior das cambotas seriam colocadas enfilagens em tubo metálico SCH Ø73, providas de manchetes espaçadas de 1m, com 6m de comprimento e com o afastamento máximo de 0,30m. Em zonas de potencial instabilidade localizada da abóboda seriam aplicadas chapas metálicas com 5mm de espessura eventualmente cravadas em avanço.

Esta zona verificou-se em 2% da escavação total, ou seja cerca de 73m. Esta solução para suporte foi aplicada aos emboquilhamentos (PK 0+037.5 ao 0+061 (TU) e PK 3+138.6 ao 3+162.1 (TU)) e ainda em zonas em que o maciço apresentou elevado grau de alteração entre os Pk’s 2+917.1 ao 2+943.1 (TU).

5.3.3. Suportes Primários nos Emboquilhamentos

O tipo de sustimento aplicado nos emboquilhamentos foi o correspondente à zona ZG3 mas com suporte primário associado a enfilagens.

No emboquilhamento do Túnel do Cortado foram executadas enfilagens com 6m de comprimento e com afastamento máximo de 0,30m dispostas ao longo do contorno da abóboda do túnel, sendo aplicado depois um revestimento sistemático constituído por betão projetado com 0,10m de espessura sobre malhasol AQ50.

No que se refere aos taludes, o talude do emboquilhamento Oeste foi tratado com um revestimento constituído por betão projetado e associado com pregagens Ø32 em aço A400NR dispostas numa malha 1,50x1,50m.
Para o emboquilhamento do Túnel do Faial foram executadas enfilagens com 6m de comprimento e com afastamento máximo de 0,30m, dispostas ao longo do perímetro exterior das cambotas, sendo aplicado depois um revestimento sistemático constituído por betão projetado com 0,05m de espessura sobre malhasol CQ30.

O talude deste emboquilhamento foi tratado com um revestimento constituído por betão projetado e associado com pregagens Ø32 em aço A400NR dispostas numa malha 1,50x1,50m.

Através da consulta do Apêndice A é possível consultar a localização dos emboquilhamentos referidos.

5.3.4. Suportes Secundários

O suporte secundário ou revestimento definitivo definido em projeto para aplicação foi em betão armado em toda a extensão do túnel, sendo a espessura do revestimento alterada de acordo com a zona do maciço em que é aplicada.

Para as secções correntes das zonas ZG1 e ZG2, o revestimento final aplicado seria o revestimento tipo A-I, que apresentava uma espessura de betão armado com 0,25cm (Figura 28).

Para as secções correntes das zonas ZG3 e ZG4, que apresentassem pior qualidade, o revestimento aplicado seria do tipo A-II. Na zona ZG3 a espessura aplicada seria de 0,40m, (Figura 29), enquanto na zona ZG4 o revestimento final aplicado apresentaria uma espessura de 0,50m.
Para secções de alargamento, no Túnel do Cortado, junto com o revestimento A-II aplicado na zona ZG3, proceder-se-ia ao travamento com uma laje horizontal ao nível da soleira das secções com pior qualidade.

Para secções de alargamento, no túnel do Faial, onde se apresentassem piores características geotécnicas utilizar-se-ia junto do revestimento tipo A-I, uma laje de travamento horizontal ao nível da soleira.

5.3.5. Impermeabilização

Embora tenha sido aplicado betão projetado sobre as superfícies interiores do túnel, esta aplicação não é suficientemente impermeável para garantir uma barreira eficaz à passagem de águas subterrâneas, pelo que foi aplicado um sistema de impermeabilização e drenagem, colocado entre o suporte primário e o revestimento definitivo.

Este sistema tem como função coletar o escoamento subterrâneo afluente à zona em que se desenvolve o túnel, evitando assim a agressão das águas aos materiais usados nas estruturas, como por exemplo corrosão nas armaduras, prolongando a sua duração e minorando os aspetos de conservação bem como evitando o aparecimento de pressões hidrostáticas sobre o revestimento definitivo.

Após colocação do suporte primário foi colocado o sistema de impermeabilização. A solução passou pela utilização de uma geomembrana do tipo PVC ou do tipo Gundline VLDPE (very low density polyethilene) com 2mm e um geotêxtil ao longo do túnel.
TÚNEL DO CORTADO. DESCRIÇÃO GERAL E ASPETOS CONSTRUTIVOS

Nos emboquilhamentos foram instaladas valas de crista de talude e valetas de banqueta para conduzir as águas afluentes aos taludes para o sistema de drenagem. Além destas, instalaram-se ainda valetas em meias manilhas Ø300 em betão, assentes em argamassa, drenos sub-horizontais, bueiros em tudo de PVC Ø100 e geodreno Ø100mm em PVC canelado e perfurado envolvido em geotêxtil.

5.4.INSTRUMENTAÇÃO

A observação através da instrumentação, no decorrer de uma obra, tem como objetivo verificar a adequabilidade não só da solução de suporte escolhida e implementada em obra, mas também das reais condições geológicas e geotécnicas do maciço e do método construtivo utilizado no decorrer da fase de escavação.

No sentido de avaliar o modo de deformação do maciço e observar e controlar o comportamento dos suportes ao longo da escavação, recorreu-se à medição de convergências e de marcas topográficas.

De modo a sintetizar a informação relativa à instrumentação foram apontadas em planta a localização das secções instrumentadas (Apêndice A) e criadas fichas individuais para cada secção do túnel monitorizada (Apêndice B). Destas fichas fazem parte a informação relativa à localização da secção em túnel único, informação relativa à sua geometria, suportes aplicados, geologia e respetivos gráficos provenientes da recolha das leituras levadas a cabo no decorrer da obra.

5.4.1.Medicações de convergência

Foram instaladas junto aos emboquilhamentos 2 bases de medição de convergências, sendo assim obtidas informações para 2 secções localizadas a 10m e a 20 m, respetivamente.

Com o avanço da escavação foram implementadas outras bases de medição nas paredes dos túneis, com uma distância da frente de escavação de 0,60m.

No restante percurso do túnel, onde as condições do maciço se apresentavam de pior qualidade, foram instaladas também bases para medição das convergências com um
espaçamento máximo de 75m em secção corrente (Figura 30 a) e 50m nas secções de alargamento (Figura 30 b).

![Diagrama de secções corrente e alargamento (GRID; CENORPLAN)](image)

Figura 30: Medição de Convergências em secção a) Corrente; b) Alargamento (GRID; CENORPLAN)

5.4.2. Medicações de marcas topográficas

As marcas topográficas são constituídas por uma cabeça de leitura acoplada a um apoio metálico, sendo que as que se localizavam sobre o terreno, fixavam esse apoio metálico em maciços de betão geometria de 0,30m x 0,30m, moldado no local e devidamente fundado no terreno que apresentava as melhores características. Estas marcas de superfície permitem a observação dos deslocamentos horizontais e verticais nas estruturas e nos terrenos envolventes.

Tentou-se coincidir, sempre que possível, os perfis de marcas topográficas de observação perpendiculares ao desenvolvimento dos túneis com as secções onde foram efetuadas as leituras das convergências e com um afastamento médio entre si de 10,00m (Figura 31).
Figura 31: Medição de marcas topográficas (GRID; CENORPLAN)

5.5. SÍNTESE DOS ASPETOS CONSTRUTIVOS

A informação relativa aos aspetos construtivos anteriormente descrita, nomeadamente no que diz respeito ao zonamento geotécnico, caracterização geomecânica e suportes primário e secundário para zonas correntes, encontra-se sintetizado na Tabela 10.

Tabela 10: Zonas geotécnicas e respetivas definições

<table>
<thead>
<tr>
<th>Zona ZG2</th>
<th>Comprimento Escavado</th>
<th>Suporte primário</th>
<th>Suporte Secundário</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2326m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentagem Escavada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>Abóboda</td>
<td>Hasteais</td>
<td>0,25m de betão armado</td>
</tr>
<tr>
<td></td>
<td>Intervalo RMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 a 53</td>
<td>Pregagens Super Swellex com 5m de comprimento; 0,15m de betão projetado c/ fibras metálicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Túnel I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intevalo GSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 a 50</td>
<td>Pregagens Swellex com 4m de comprimento; 0,05m de betão projetado c/ fibras metálicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,05m de betão projetado c/ fibras metálicas</td>
<td>0,25m de betão armado</td>
</tr>
<tr>
<td>Zona ZG3</td>
<td>Comprimento Escavado</td>
<td>Suporte primário</td>
<td>Suporte Secundário</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>725,5m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentagem Escavada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23%</td>
<td>Abóboda</td>
<td>Hasteais</td>
<td>0,40m de betão armado</td>
</tr>
<tr>
<td>Intervalo RMR</td>
<td>Cambotas metálicas HEB180, HEB200 e HEB220; rede electrossoldada AQ50; 0,20m de betão projetado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 a 45</td>
<td>Túnel I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervalo GSI</td>
<td>Abóboda</td>
<td>Hasteais</td>
<td>0,40m de betão armado</td>
</tr>
<tr>
<td>12 a 42</td>
<td>Túnel II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervalo RMR</td>
<td>Cambotas metálicas HEB160 afastadas 1m; rede electrossoldada AQ50; 0,10m de betão projetado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 a 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervalo GSI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 a 28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zona ZG3*</th>
<th>Comprimento Escavado</th>
<th>Suporte primário</th>
<th>Suporte Secundário</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentagem Escavada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2%</td>
<td>Abóboda</td>
<td>Hasteais</td>
<td>0,40m de betão armado</td>
</tr>
<tr>
<td>Intervalo RMR</td>
<td>Cambotas metálicas HEB160 afastadas 0,50m; rede electrossoldada AQ50; 015m de betão projetado. Enfilagens c/ 6m de comprimento em tubo metálico SCHØ73 espaçadas de 1m, c/ afastamento máximo 0,30m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 a 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervalo GSI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 a 28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CAPÍTULO 6 - ANÁLISE GEOMECÂNICA COM RECURSO A MODELOS NUMÉRICOS BIDIMENSIONAIS

6.1. MODELOS DE CÁLCULO PARA COMPARAÇÃO COM PARÂMETROS DE PROJETO

Com o objetivo de replicar os deslocamentos obtidos em obra, de modo a obter os parâmetros de resistência e deformabilidade do maciço por retroanálise, foram desenvolvidos vários modelos 2D, em estado plano de deformação, com recurso ao programa Phase2 (v 8.0) da Rocscience.

Para tal, utilizaram-se modelos bidimensionais com recurso a uma malha de elementos finitos triangulares de 3 nós, mais refinada em torno da secção a escavar, para as 14 secções localizadas ao longo do túnel. Os parâmetros geomecânicos foram determinados com base no critério de Hoek e Brown.

As geometrias da escavação nas diversas secções foram importadas a partir das peças desenhadas disponibilizadas em suporte digital (AutoCAD), enquanto os recobrimentos foram determinados através das cartas topográficas fornecidas.

Por se tratar de um problema com inúmeras variáveis a atendendo ao número limitado de medições e de informação disponíveis, tornou-se necessário desde o início fixar alguns parâmetros dos modelos de cálculo. Neste sentido, os primeiros parâmetros que se fixaram através de análises de sensibilidade iniciais foram as condições de fronteira, o coeficiente de Poisson e o estado de tensão.
As condições de fronteira impostas aos modelos restringiam os deslocamentos horizontais nas laterais e os deslocamentos horizontais e verticais na base. Adotou-se um coeficiente de Poisson de 0,3 por se considerar que este varia dentro de um intervalo de valores reduzido.

Quanto ao estado de tensão, considerou-se um estado de tensão gravítico com os valores do peso volúmico aparente seco dos materiais utilizados definidos em função da caracterização geológico-geotécnica efetuada durante a execução da obra. Assim, utilizou-se um peso volúmico de 25kN/m³ para basaltos e um peso volúmico de 20kN/m³ para tufos por estes conterem material basáltico na sua constituição. O coeficiente de impulso foi definido após uma análise de sensibilidade efetuada para a secção localizada ao Pk 3+136 (TU), tomando os valores dos deslocamentos à superfície como referência, por se tratarem de medições de deslocamentos absolutos. Como se pode observar na Figura 32, o coeficiente de impulso K₀=0,6 foi o que reproduziu resultados mais próximos aos obtidos em obra.

O faseamento de escavação adotado para as secções modeladas procurou respeitar sempre o apresentado no subcapítulo 5.3.1. De modo a ter em conta o efeito tridimensional da frente de escavação no comportamento do maciço, adotou-se um modelo composto por cinco fases (stages) para a secção corrente (Tabela 11 e Fig. 33) e 11 fases (stages) para a secção de alargamento (Tabela 12 e Fig. 34).

Figura 32: Deslocamentos superficiais na secção localizada ao Pk 3+136 (TU)
Tabela 11: Stages utilizadas em zona de secção corrente

<table>
<thead>
<tr>
<th>Stage</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Maciço - Inicial</td>
<td></td>
</tr>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões de 50% para zona 1</td>
<td></td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustimento para zona 1</td>
<td></td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões de 50% para zona 2</td>
<td></td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação e aplicação do sustimento para zona 2</td>
<td></td>
</tr>
</tbody>
</table>

Figura 33: Fases de escavação de secção corrente Pk 0+067,5 (TU)
Tabela 12: Stages utilizadas em zona de secção de alargamento

Stage 1	Maciço - Inicial
Stage 2	Alívio de tensões 50% para zonas 1 e 2
Stage 3	Escavação e aplicação do sustimento para zonas 1 e 2
Stage 4	Alívio de tensões a 50% para zona 3
Stage 5	Escavação da zona 3
Stage 6	Alívio de tensões a 50% para zona 4
Stage 7	Escavação da zona 4
Stage 8	Alívio de tensões a 50% para zona 5
Stage 9	Escavação e aplicação do sustimento para a zona 5
Stage 10	Alívio de tensões a 50% para zona 6
Stage 11	Escavação e aplicação do sustimento para a zona 6

Figura 34: Fases de escavação para zona em secção de alargamento Pk 3+136 (TU)
Para todas as secções estudadas o avanço da escavação foi simulado através da adoção de um material fictício com comportamento elástico e com um módulo de deformabilidade correspondente a metade do valor do módulo considerado para o maciço, ou seja, foi adotada uma redução de 50% antes da ativação do sustentamento primário. Este valor foi definido após uma análise de sensibilidade em que se fez variar o módulo de Young do material fictício entre 30% a 70% do módulo do maciço, tendo-se verificado que os modelos apresentavam pouca sensibilidade a esta variação.

No que concerne aos restantes materiais utilizados para modelação do maciço, foi definido um comportamento plástico.

Por fim, para cada secção foram realizadas várias iterações visando a melhor aproximação entre o resultado dos modelos numéricos e os valores obtidos através da instrumentação, nomeadamente convergências e marcas superficiais.

Neste sentido, numa primeira iteração (designado como Modelo 1), os valores referentes às características dos materiais aplicados foram obtidos através do programa RocLab (v 1.0) da Rocscience (Figura 35b), procurando sempre respeitar os valores referentes à resistência da compressão uniaxial e RMR e GSI apresentados nos levantamentos efetuados para a obra (Figura 35 a).

Figura 35: Valores de parâmetros dos solos para o Modelo 1 no Pk 3+136 TU a) na cartografia b) em RocLab
A título de exemplo, na Tabela 13 são apresentados os valores referentes aos vários parâmetros utilizados no Modelo 1 da secção localizada ao Pk 3+136 (TU).

Tabela 13: Parâmetros referentes aos tufos utilizados no modelo1 da secção de Pk 3+136 (TU)

<table>
<thead>
<tr>
<th>Resistência do material rochoso intacto à compressão uniaxial</th>
<th>GSI</th>
<th>Coesão</th>
<th>Ângulo de atrito</th>
<th>Módulo de deformabilidade do maciço</th>
</tr>
</thead>
<tbody>
<tr>
<td>5MPa</td>
<td>24</td>
<td>169,7kPa</td>
<td>24,87</td>
<td>84,78 MPa</td>
</tr>
</tbody>
</table>

Os valores adotados para os restantes modelos e restantes secções podem ser consultados nas fichas que compõem o Apêndice B.

Recorrendo à ferramenta *Interpret* para o cálculo do modelo desenvolvido, retiraram-se os deslocamentos verticais e horizontais nos pontos fulcrais para a análise dos deslocamentos à superfície e das convergências (definidos no subcapítulo 5.4.1 e 5.4.2).

Nas Figuras 36 e 37 ilustram-se os pontos para os quais se determinaram os deslocamentos horizontais e verticais para as secções em zona corrente e zona de alargamento para cálculo das convergências.
Figura 36: Cálculo dos deslocamentos do modelo em secção corrente
Figura 37: Cálculo dos deslocamentos do modelo em secção de alargamento

Nas iterações seguintes, com vista à otimização do Modelo 1, utilizaram-se conjuntos de parâmetros de resistência (ângulo de atrito e coesão efetiva) e de deformabilidade (módulo de deformabilidade) com o objetivo de otimizar a relação entre os resultados dos modelos numéricos e os valores obtidos nas medições em obra. Para tal, recorreu-se à aplicação de duas expressões:
ESTUDO GEOMECÂNICO DO TÚNEL DO CORTADO NA ILHA DA MADEIRA

- Raíz do Erro Médio Quadrático

\[REMQ = \sqrt{\frac{\sum (y_m - y_i)^2}{N}} \]

(19)

- Erro Médio Ponderado

\[EMP = \frac{\sum \left| \frac{y_m - y_i}{y_m} \right|}{N} \]

(20)

em que: \(N \) designa o número de exemplos, \(y_m \) o valor medido e \(y_i \) o valor estimado pelo modelo em causa.

Foi possível verificar, ao longo das várias iterações, que os modelos criados não mostravam grande sensibilidade às variações dos parâmetros de resistência, mas sim às variações do módulo de deformabilidade. Assim, foi necessário recorrer à variação deste de forma a conseguir a melhor correspondência de dados.

Após o ajuste do módulo de deformabilidade, procedeu-se a várias iterações onde se fez variar os parâmetros de resistência de modo a minimizar o erro entre os valores medidos e os estimados. Para tal, utilizaram-se os parâmetros de resistência definidos por (Lourenço, et al., 2010), ao invés da utilização do software RocLab.

Assim, executaram-se três novos modelos para cada secção, sendo o Modelo 2 composto pelos parâmetros de resistência situados junto ao limite superior considerado pelo autor, o Modelo 3 pelos parâmetros no limite inferior e finalmente o Modelo 4 pelos valores intermédios.

A escolha dos parâmetros foi feita com base no valor do módulo de deformabilidade obtido no Modelo 1 de cada secção, e a análise dos resultados relativos aos deslocamentos superficiais e às convergências foi realizada com base no mesmo método aplicado ao Modelo 1.
ANÁLISE GEOMECÂNICA COM RECURSO A MODELOS NUMÉRICOS BIDIMENSIONAIS

Nas secções para as quais existia informação relativa aos deslocamentos superficiais, procurou-se fazer coincidir as datas das leituras em obra com as diversas fases da modelação, de maneira a replicar com mais precisão os deslocamentos ocorridos.

A título de exemplo, as Tabelas 14 e 15 apresentam os deslocamentos verticais obtidos à superfície de duas secções. Os dados presentes na Tabela 14 são relativos ao alvo central da secção corrente, situada ao Pk 0+067,5 (TU), enquanto os dados da Tabela 15 são relativos ao alvo da secção de alargamento situada ao Pk 3+136 (TU).

Na primeira coluna é identificada a stage referente aos deslocamentos obtidos em cada modelo particular. Após analisar os gráficos das leituras em obra, procurou-se colocar na última coluna as datas referentes aos valores mais próximos com os conseguidos na modelação.

Tabela 14: Deslocamentos verticais obtidos na secção localizada ao Pk 0+067,5 (TU)

<table>
<thead>
<tr>
<th>Stage Number</th>
<th>Deslocamentos no alvo central – Modelo 1</th>
<th>Deslocamentos no alvo central – Modelo 2</th>
<th>Deslocamentos no alvo central – Modelo 3</th>
<th>Deslocamentos no alvo central – Modelo 4</th>
<th>Datas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>26-Jun</td>
</tr>
<tr>
<td>2</td>
<td>0,0006</td>
<td>0,0006</td>
<td>0,0006</td>
<td>0,0006</td>
<td>11-Jul</td>
</tr>
<tr>
<td>3</td>
<td>-0,0011</td>
<td>-0,0007</td>
<td>-0,0007</td>
<td>-0,0007</td>
<td>22-Ago</td>
</tr>
<tr>
<td>4</td>
<td>-0,0024</td>
<td>-0,0023</td>
<td>-0,0023</td>
<td>-0,0023</td>
<td>17-Out</td>
</tr>
<tr>
<td>5</td>
<td>-0,0058</td>
<td>-0,0055</td>
<td>-0,0055</td>
<td>-0,0055</td>
<td>02-Fev</td>
</tr>
</tbody>
</table>
Tabela 15: Deslocamentos verticais obtidos na seção ao Pk 3+136 (TU)

<table>
<thead>
<tr>
<th>Stage Number</th>
<th>Deslocamentos – Modelo 1</th>
<th>Deslocamentos – Modelo 2</th>
<th>Deslocamentos – Modelo 3</th>
<th>Deslocamentos – Modelo 4</th>
<th>Datas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>14-Abr</td>
</tr>
<tr>
<td>2</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>12-Mai</td>
</tr>
<tr>
<td>3</td>
<td>-0,030</td>
<td>-0,029</td>
<td>-0,029</td>
<td>-0,030</td>
<td>19-Mai</td>
</tr>
<tr>
<td>4</td>
<td>-0,028</td>
<td>-0,027</td>
<td>-0,027</td>
<td>-0,027</td>
<td>20-Mai</td>
</tr>
<tr>
<td>5</td>
<td>-0,028</td>
<td>-0,027</td>
<td>-0,027</td>
<td>-0,028</td>
<td>22-Mai</td>
</tr>
<tr>
<td>6</td>
<td>-0,026</td>
<td>-0,025</td>
<td>-0,025</td>
<td>-0,026</td>
<td>23-Mai</td>
</tr>
<tr>
<td>7</td>
<td>-0,029</td>
<td>-0,026</td>
<td>-0,027</td>
<td>-0,027</td>
<td>29-Mai</td>
</tr>
<tr>
<td>8</td>
<td>-0,031</td>
<td>-0,028</td>
<td>-0,029</td>
<td>-0,029</td>
<td>30-Mai</td>
</tr>
<tr>
<td>9</td>
<td>-0,032</td>
<td>-0,029</td>
<td>-0,030</td>
<td>-0,031</td>
<td>31-Mai</td>
</tr>
<tr>
<td>10</td>
<td>-0,034</td>
<td>-0,031</td>
<td>-0,032</td>
<td>-0,033</td>
<td>02-Jun</td>
</tr>
<tr>
<td>11</td>
<td>-0,035</td>
<td>-0,032</td>
<td>-0,033</td>
<td>-0,034</td>
<td>06-Jun</td>
</tr>
</tbody>
</table>

Nas Figuras 38 e 39 são apresentados os comparativos dos deslocamentos obtidos nos vários modelos com os deslocamentos obtidos em obra para os Pk’s 0+067,5 (TU) e 3+136 (TU), respectivamente.

Figura 38: Comparação dos deslocamentos na seção localizada ao Pk 0+067,5 (TU)
ANÁLISE GEOMECÂNICA COM RECURSO A MODELOS NUMÉRICOS BIDIMENSIONAIS

Figura 39: Comparação dos deslocamentos na secção localizada ao Pk 3+136 (TU)

No decorrer das modelações de secções com deslocamentos à superfície observou-se que, após variar o módulo de deformabilidade até obter deslocamentos com a mesma magnitude dos que se apresentaram em obra, apenas era possível obter uma correspondência total no andamento dos deslocamentos à superfície se fosse utilizado um alívio de tensões de 90%.

No entanto, este nível de alívio de tensões aparenta ser invérsímil e, por esta razão, e à semelhança do observado na Figura 39, alguns deslocamentos à superfície não apresentam uma correspondência no seu desenvolvimento inicial.

Para além da sensibilidade ao alívio de tensões superiores a 90%, os modelos demonstraram sensibilidade ao módulo de deformabilidade escolhido para o material, tendo sido este parâmetro o mais relevante na tentativa de obter deslocamentos da mesma gama que os apresentados em obra.

Nas restantes secções que dispunham de informação relativa às convergências, procurou-se fazer coincidir o valor do deslocamento final, entre pontos obtidos nos modelos, com as leituras obtidas em obra, para a maioria das cordas em cada secção.
Para tal, recorreu-se ao cálculo dos deslocamentos horizontais e verticais para cada ponto da secção em questão, como ilustrado na Figura 40.

Figura 40: Secção tipo para medição das convergências

Com a ajuda de uma folha de cálculo procedeu-se à programação das células de forma a calcular em cada stage a deformação acumulada em cada corda, recriando assim o comportamento exibido por estas em obra.

Para tal, o procedimento utilizado foi o cálculo da distância entre dois pontos no plano, considerando os pontos iniciais na stage, que corresponderia ao início da leitura da convergência em obra, e os pontos finais na última stage, que corresponderia à última leitura em obra.

Devido ao facto de existirem secções que exibiam leituras referentes aos deslocamentos superficiais e às convergências, efetuadas em diferentes fases da execução da obra, tornou-se difícil fazer coincidir as datas de ambas as leituras na análise dos modelos.

Como tal, para estas secções foram utilizados os deslocamentos à superfície para servirem de referência aos modelos. Para as restantes secções foram utilizados os intervalos de tempo que acompanhavam as respetivas leituras.
ANÁLISE GEOMECÂNICA COM RECURSO A MODELOS NUMÉRICOS BIDIMENSIONAIS

A título de exemplo, a Tabela 16 apresenta esses valores para a secção de alargamento localizada ao Pk 3+136 (TU).

Tabela 16: Valores das convergências para a secção localizada ao Pk 3+136 (TU)

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0,007</td>
<td>-0,008</td>
<td>-0,007</td>
<td>-0,007</td>
<td>-0,007</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>-0,004</td>
<td>-0,009</td>
<td>-0,007</td>
<td>-0,007</td>
<td>-0,008</td>
</tr>
<tr>
<td>Corda 1-7</td>
<td>-0,009</td>
<td>-0,002</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,003</td>
</tr>
<tr>
<td>Corda 6-7</td>
<td>-0,008</td>
<td>-0,008</td>
<td>-0,006</td>
<td>-0,007</td>
<td>-0,008</td>
</tr>
<tr>
<td>Corda1-6</td>
<td>-0,004</td>
<td>-0,001</td>
<td>-0,002</td>
<td>-0,001</td>
<td>-0,001</td>
</tr>
<tr>
<td>REMQ</td>
<td>3,919E-03</td>
<td>3,427E-03</td>
<td>3,542E-03</td>
<td>3,466E-03</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>5,554E-01</td>
<td>4,888E-01</td>
<td>4,868E-01</td>
<td>4,710E-01</td>
<td></td>
</tr>
</tbody>
</table>

A Figura 41 mostra uma comparação dos valores referentes às convergências obtidas ao Pk 3+136 (TU).

Figura 41: Comparação das convergências na secção localizada ao Pk 3+136 (TU)

É possível observar pela análise da Tabela 15 e da Figura 41 que, apesar das melhorias exibidas pelo uso dos parâmetros de resistência considerados por (Lourenço, et al., 2010), a grandeza dos resultados obtidos não difere muito dos anteriormente apresentados.

No Apêndice B é possível consultar os resultados das modelações para cada uma das 14 secções analisadas.
6.2. COMPARAÇÃO DOS PARÂMETROS OBTIDOS POR RETROANÁLISE COM OS PARÂMETROS DE PROJETO

6.2.1. Análise dos valores de GSI
Ao longo dos modelos efetuados, verificou-se constantemente a presença de valores baixos de GSI para os materiais utilizados nas modelações, e correspondentes à zona geotécnica ZG3. Estes valores são indicativos que ao maciço em questão, e de acordo com a classificação efetuada em projecto, correspondem a basaltos fraturados a muito fraturados, com elevado grau de alteração e fraca resistência, e tufos exibindo condições semelhantes, como é possível verificar pela análise da Figura 42.

![Intervalo dos valores de GSI para Basaltos e Tufos utilizados nos modelos](image)

Este elevado grau de fraturação e alteração dos materiais resulta numa elevada heterogeneidade, não sendo possível por vezes fazer uma distinção dos diversos materiais, de forma a criar uma fronteira de separação dos mesmos para modelação e para conseguir obter resultados mais realistas.

6.2.2. Análise da coesão e ângulo de atrito
Na Figura 43 apresenta-se uma comparação dos parâmetros de resistência utilizados ao longo dos vários modelos realizados com os parâmetros de resistência em formações vulcânicas da ilha da Madeira (Lourenço, et al., 2010).
A maioria dos basaltos referentes ao Modelo 1 apresenta um ângulo de atrito e uma coesão fora dos intervalos definidos em (Lourenço, et al., 2010), embora a maior discrepância se verifique para os valores da coesão. Para o material que apresentou a maior coesão o valor é aproximadamente dez vezes superior ao expectável em obra.

A maioria dos tufos referentes ao Modelo 1 apresentou valores referentes ao ângulo de atrito junto ao limite superior do intervalo esperado. No que diz respeito aos valores da coesão, uma fração destes encontram-se dentro do intervalo previsto enquanto a outra apresenta valores superiores. O tufo que registou a maior coesão exibiu um valor cinco vezes superior ao expectável em obra.

Quando comparados, os parâmetros de resistência resultantes do Modelo 1 para as diversas secções exibem uma dispersão dos resultados fora dos limites considerados por (Lourenço, et al., 2010).
É possível observar, nos dados resultantes do Modelo 1 para cada secção, duas concentrações de dados distintas. A primeira, mais próxima dos dados do autor, exibe parâmetros de resistência dentro dos intervalos obtidos para o estudo geológico-geotécnico em projeto. A segunda concentração de valores, mais afastada, exibe tufos com coesões superiores às esperadas, embora mantenha os ângulos de atrito dentro do intervalo desejado. Quanto aos basaltos contidos nesta mancha, estes exibem ambos os parâmetros de resistência fora dos intervalos impostos pela cartografia de obra.

Assim, uma análise a estes parâmetros com base na classificação efetuada em obra e na retroanálise realizada demonstra que os materiais das formações vulcânicas da ilha, neste caso concreto os afetos à obra, exibem parâmetros de resistência fora da área considerada pelo autor.

Na mesma figura apresentam-se ainda assinalados os parâmetros de resistência utilizados nos restantes modelos e que após a realização destes, revelaram uma melhor correspondência entre os deslocamentos obtidos no modelo e os deslocamentos obtidos em obra.

Após efetuados os novos modelos, foi possível observar que:

- A maioria dos modelos criados com os novos parâmetros apresentou uma melhoria de resultados quando se utilizaram os valores referentes à coesão e ângulo de atrito situados no limite inferior.
- Apenas um modelo apresentou melhores resultados junto ao limite superior.
- Apenas um modelo não apresentou melhores resultados com a utilização dos novos parâmetros de resistência.

Com base na variação dos parâmetros de resistência efetuada e na comparação dos valores obtidos por ambas as modelações, foi novamente notória a pouca sensibilidade demonstrada pelos modelos à variação do ângulo de atrito e da coesão, sendo o módulo de deformabilidade o principal responsável pelo comportamento dos modelos.

Ainda de acordo com os limites propostos pelo autor, os materiais utilizados nas últimas modelações encontram-se numa mancha caracterizada como basaltos vacuolares muito alterados. Esta caracterização, mais semelhante à da zona geotécnica ZG3, é representativa do
ANÁLISE GEOMECÂNICA COM RECURSO A MODELOS NUMÉRICOS BIDIMENSIONAIS

elevado grau de alteração dos basaltos e tufos encontrados em obra, bem como dos seus fracos parâmetros de resistência, apresentando portanto uma má qualidade.

Por forma a averiguar a aplicabilidade da classificação RMR em termos de parâmetros de resistência ao caso em estudo, procedeu-se à compilação dos valores referentes aos parâmetros estimados pela classificação RMR e aos parâmetros obtidos através do processo de retroanálise.

Na Tabela 17 são então apresentados os parâmetros de resistência para cada secção modelada.

<table>
<thead>
<tr>
<th>Pk em Túnel Único</th>
<th>Rocha</th>
<th>Parâmetros previstos por RMR</th>
<th>Resultados obtidos por retroanálise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Coesão (KPa)</td>
<td>Ângulo de atrito (β)</td>
</tr>
<tr>
<td>0+067,5</td>
<td>Tufos</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td>0+609</td>
<td>Basalto</td>
<td>200 a 300</td>
<td>25 a 35</td>
</tr>
<tr>
<td>0+619</td>
<td>Basalto</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td>0+629</td>
<td>Basalto</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td></td>
<td>Tufos</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td></td>
<td>Basalto</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td></td>
<td>Tufos</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td></td>
<td>Basalto</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td></td>
<td>Tufos</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td></td>
<td>Basalto</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td></td>
<td>Tufos</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td>3+017</td>
<td>Tufo superior</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td></td>
<td>Tufo inferior</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td>3+036</td>
<td>Tufos</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td>3+082</td>
<td>Tufos</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td>3+136</td>
<td>Tufos</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
<tr>
<td>Pk em Troço Abandonado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0+246</td>
<td>Basalto</td>
<td>< 100</td>
<td>< 15</td>
</tr>
<tr>
<td>0+250</td>
<td>Basalto</td>
<td>100 a 200</td>
<td>15 a 25</td>
</tr>
</tbody>
</table>

Através de uma análise da Tabela 17, é possível observar que relativamente aos valores da coesão obtidos através dos modelos criados, estes estão para a maioria dos casos junto ao limite inferior ao previsto pelo sistema RMR.
Quanto aos valores relativos ao ângulo de atrito, os valores obtidos para os modelos criados durante o processo de retroanálise, exibem uma disparidade quando comparados com os valores previstos pelo sistema RMR.

Esta disparidade de valores poderá resultar da dificuldade que existe em caracterizar maciços heterogêneos através de sistemas como o RMR. É neste sentido que a retroanálise revela particular importância, pois permite que se observe e avalie quais os melhores parâmetros e ferramentas para estudar o comportamento destes maciços.

6.2.3. Resistência à compressão uniaxial e Módulo de Young

A Figura 44 apresenta duas relações entre o módulo de Young e resistência à compressão uniaxial, adaptados de (Lourenço, et al., 2010), e nos quais foram inseridos os valores dos materiais que resultaram das modelações.

![Figura 44: Resistência à compressão uniaxial de a) Basaltos; b) Tufos](attachment:fig44.png)
Uma primeira análise à figura anterior permite, observar que os basaltos e tufos encontrados em obra apresentam resultados ligeiramente dispersos, e numa mancha inferior à apresentada pelo autor.

Ao analisar a Figura 4 a) é visível que, em comparação com os outros basaltos, os afectos a esta obra são maioritariamente brandos, pois as suas resistências exibem valores na ordem dos 25MPa.

Analogamente, ao analisar os valores relativos ao módulos de deformabilidade, é também possível observar uma ligeira discrepância nos valores. O módulo de deformabilidade da rocha é influenciado, para além de outros factores, por defeitos no material, orientação da formação rochosa, grau de alteração, grau de compressão e descompressão, e presença de água.

Os baixos valores para os módulos de deformabilidade apresentados pelos basaltos podem, assim, ser o resultado de um elevado grau de alteração do maciço aliado à presença de água em algumas secções, como registado em obra.

Relativamente aos valores dos módulos de deformabilidade dos tufos analisados (Figura 4 b), estes mostram uma mancha de valores ao mesmo nível das retratadas pelo autor, embora apresentem uma resistência à compressão uniaxial superior.

Estes valores poderão ser resultado de vários factores. Deverá pesar principalmente a presença no seio dos tufos de material resistente (filões basálticos, bombas vulcânicas e piroclastos). Este factor pode originar tufos bem compactos que se materializam em resistências de compressão uniaxiais superiores.

É ainda possível observar através da Figura 4, que os quocientes entre o módulo de deformabilidade e a resistência à compressão uniaxial apresentam valores abaixo dos restantes materiais. Tal facto deve-se aos baixos módulos de deformabilidade característicos dos materiais utilizados nos modelos. Segundo a lei de Hooke, este quociente representa o inverso da extensão de rotura. Assim o baixo valor deste quociente representará uma maior extensão de rotura e, consequentemente uma maior deformabilidade.
Quando comparados com um leque mais vasto de análises, apresentadas por (Vieira de Sousa, et al., s.d.), é possível observar que a mancha de valores decorrentes das modelações concentra-se na sua totalidade numa zona próxima a tufos e a basaltos geralmente vacúolares muito alterados (Figura 45).

A próximidade dos materiais utilizados nas modelações a este tipo de materiais muito alterados, deve-se ao facto dos materiais afetos às secções modeladas fazerem parte da zona geotécnica ZG3. Além desta zona apresentar formações friáveis e de fraca coesão, a percolação de águas em parte dos basaltos escavados poderá ser uma das hipóteses para os resultados apresentados.

O elevado grau de meteorização dos materiais encontrados ao longo da escavação, a sua fraca coesão e resistência, serão os factores mais preponderantes para o nítido decréscimo do módulo de deformabilidade.
É necessário ter em consideração que os métodos de classificação para avaliar o módulo de deformabilidade não conseguem recrear com a precisão pretendida o comportamento não linear dos materiais no domínio das deformações, consequência sobretudo do efeito escala.

Destas imprecisões podem surgir algumas discrepâncias que resultam em valores mais altos do módulo para maciços constituídos por rochas brandas, como as presentes na modelação. Como tal, estes materiais podem revelar-se mais resistentes para pequenas deformações, como as simuladas nos modelos.

6.2.4. Análise dos erros

Nas Figuras 46 e 47 são apresentadas as distribuições da raiz do erro quadrático médio (REMQ) e do erro médio ponderado (EMP) para as secções com medições de convergências.

![Gráfico de distribuição de erro]

Figura 46: Valores de REMQ para as várias secções com medições de convergências

Através da análise da distribuição do REMQ apresentado na Figura 46, é possível observar que para a maioria das secções, o valor dos erros apresentam uma grandeza semelhante, com exceção das últimas duas secções que exibem uma variação significativa.

Analogamente, uma análise da distribuição do EMP apresentado na Figura 47, exibe um comportamento semelhante, com três secções a exibirem um erro superior às restantes.
Figura 47: Valores de EMP para as várias secções com medições de convergências

Relativamente às duas últimas secções presentes em ambas as distribuições analisadas e em que se verificou um aumento da REMQ e do EMP, este poderá ser resultado de, ao contrário das restantes secções modeladas, estas secções apresentarem leituras de obra num total de 6 cordas.

Assim, as distribuições do erro quadrático médio e do erro médio ponderado sugerem que as secções que apresentam um aumento destes erros resultam de um acumular de diferenças nas várias cordas, sendo superiores nas secções com maior número de leituras.

6.2.5. Síntese dos valores utilizados segundo o critério de Hoek-Brown

Relativamente aos valores utilizados nas modelações segundo o critério de Hoek-Brown, estes são apresentados na Tabela 18.

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Grau de alteração</th>
<th>$\sigma_c$$_{\text{intact}}$ [MPa]</th>
<th>GSI</th>
<th>mi</th>
<th>$E_c$$_{\text{intact}}$ [GPa]</th>
<th>Em [GPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tufo vulcânico muito consolidado</td>
<td>W3</td>
<td>25</td>
<td>33</td>
<td>13</td>
<td>10</td>
<td>1,10</td>
</tr>
<tr>
<td>Tufo vulcânico consolidado</td>
<td>W4</td>
<td>25</td>
<td>24 - 32</td>
<td>9 - 13</td>
<td>10 - 11</td>
<td>0,60 - 1,00</td>
</tr>
<tr>
<td>Tufo vulcânico muito alterado</td>
<td>W3-4 - W4-5</td>
<td>6</td>
<td>25</td>
<td>13</td>
<td>2</td>
<td>0,18</td>
</tr>
<tr>
<td>Tufo brechóide medianamente alterado</td>
<td>W3-4 - W4-5</td>
<td>5</td>
<td>26 - 29</td>
<td>13</td>
<td>2</td>
<td>0,20 - 0,25</td>
</tr>
<tr>
<td>Tufo brechóide muito alterado</td>
<td>W4-5</td>
<td>5</td>
<td>24 - 26</td>
<td>13</td>
<td>1,5 - 2,0</td>
<td>0,08 - 0,18</td>
</tr>
<tr>
<td>Basalto medianamente</td>
<td>W3</td>
<td>20 - 35</td>
<td>33 - 38</td>
<td>20 - 25</td>
<td>8,8 - 11,3</td>
<td>1,00 - 4,50</td>
</tr>
</tbody>
</table>
As duas primeiras colunas apresentam uma descrição dos materiais utilizados nas modelações segundo a caracterização presente na geologia em projeto para as secções modeladas. As restantes colunas apresentam os parâmetros relativos à resistência à compressão uniaxial, GSI, mi, módulo de deformabilidade intacto e módulo de deformabilidade utilizado nos modelos para cada tipo de solo.

Na Tabela 19, (Lourenço, et al., 2010) apresenta os valores da resistência à compressão uniaxial, GSI, mi e módulo de deformabilidade, expectáveis para diferentes materiais, dos quais foram selecionados os utilizados nos modelos.

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Grau de alteração</th>
<th>(\sigma_{c,\text{intact}}) [MPa]</th>
<th>GSI</th>
<th>mi</th>
<th>(E_{\text{intact}}) [GPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basaltos com elevado grau de alteração</td>
<td>W3-4</td>
<td>1 - 10</td>
<td>40 - 60</td>
<td>20 - 25</td>
<td>1 - 10</td>
</tr>
<tr>
<td>Tufos brechóides</td>
<td>W4-5</td>
<td>0,5 - 7</td>
<td>-</td>
<td>-</td>
<td>0,1 - 2</td>
</tr>
</tbody>
</table>

Ao efetuar a comparação entre os parâmetros referentes à resistência à compressão uniaxial e ao \(E_{\text{intact}} \) é possível observar que os valores considerados nos modelos exibem uma perfeita correspondência com os intervalos apresentados pelo autor.

Quanto à análise dos módulos de deformabilidade utilizados nos modelos, é necessário ter em conta que os valores da Tabela 19 são referentes ao \(E_{\text{em}} \) de materiais intactos. Assim e como seria expectável, os módulos de deformabilidade utilizados apresentam-se no limite inferior dos intervalos expectáveis por (Lourenço, et al., 2010).

Além do \(E_{\text{em}} \), os baixos valores exibidos pelo GSI dos basaltos modelados em comparação com os da Tabela 19, revelam o reconhecido elevado grau de alteração dos materiais encontrados em obra.
CAPÍTULO 7 - CONSIDERAÇÕES FINAIS

7.1. CONCLUSÕES

Através deste trabalho pretendeu-se contribuir para um melhor conhecimento dos parâmetros geomecânicos dos complexos vulcânicos da Ilha da Madeira, nomeadamente para o conhecimento dos parâmetros de resistência.

Para tal, desenvolveram-se uma série de modelos que, com base nas leituras da obra do Túnel do Cortado (Faial, Santana), que permitiram a realização de um processo de retroanálise com vista à caracterização dos maciços afetos à obra, constituídos essencialmente por basaltos e tufos.

Através da análise e comparação dos resultados obtidos com outros decorrentes de estudos anteriores para a Ilha da Madeira e arquipélago das Canárias, é possível observar que os resultados obtidos com esta dissertação enquadram-se com os resultados apresentados por outros autores.

Assim, tanto os basaltos como os tufos analisados exibem uma dispersão razoável relativamente aos parâmetros de resistência quando comparados com os valores exibidos na bibliografia, embora ocorra um ligeiro afastamento destes parâmetros quando comparados com as estimativas presentes em projeto.

De realçar também que através dos resultados obtidos é possível observar que para a realização de modelos bidimensionais cujos parâmetros de resistência estejam limitados a pequenos intervalos, os parâmetros de deformabilidade são os responsáveis pelas maiores alterações no comportamento desses modelos.
Considerações Finais

Com base no trabalho realizado ao longo desta dissertação foi possível identificar ainda algumas dificuldades nas quais se incluem a falta de peças do projeto do Túnel do Cortado, devido à maioria dos documentos relacionados com esta obra se encontrarem em arquivo morto, limitações no software Phase2 para uma realização de modelos de retroanálise mais precisa, como por exemplo a impossibilidade de simular com precisão as cordas para medição de convergências, e limitações na definição dos parâmetros de resistência no software RocLab com base na geologia da obra, pois este software apresenta uma gama de valores demasiado limitada para alguns tipos de materiais.

Considera-se contudo, com base nos resultados obtidos, que seria uma mais-valia a continuidade do estudo geomecânico através de retroanálise utilizando outro software, de modo a avaliar com maior precisão se a divergência entre resultados deve-se ao software utilizado ou à aplicação do sistema RMR aos maciços vulcânicos da Ilha.

7.2. Desenvolvimentos Futuros

Como desenvolvimentos futuros considera-se que seria importante dar continuidade ao estudo dos parâmetros geológicos e geotécnicos dos maciços da região através do processo de retroanálise.

Para tal seria enriquecedor que se aplicasse um processo de retroanálise otimizado a outros túneis que possam providenciar informações que levem a um refinamento dos parâmetros de resistência dos maciços da região de maneira a ter uma ferramenta que sirva de apoio para futuras construções ou intervenções de infraestruturas.

No que se refere ao levantamento dos túneis rodoviários efetuado no decorrer deste trabalho, seria de interesse continuar-lo e completar com algumas informações relativas a intervenções que tenham sofrido, juntamente com um levantamento fotográfico dos mesmos para posteriormente fazerem parte de uma base de dados regional.
REFERÊNCIAS BIBLIOGRÁFICAS

GRID; CENORPLAN Ligação Rodoviária Faial/Santana/Ribeira de S. Jorge - Projecto de Execução [Relatório]. - Madeira : [s.n.].

Prada Susana Apontamentos Teóricos da Unidade Curricular de Túneis e Obras Subterrâneas // Zonamento e Classificações Geomecânicas. - Funchal : [s.n.], 2013. - Vol. III.

Santos Josefino Cláudia, Guerra Nuno M. e Matos Fernandes Manuel Modelação Bidimensional de Ancoragens em Escavações Suportadas por Estruturas de Contenção Flexíveis [Livro]. - s.d..

Sousa João Almeida Projecto de Túneis [Relatório]. - Coimbra : Departamento de Engenharia Civil da Faculdade de Ciências e Tecnologia da Universidade de Coimbra, 2005/06.

Vieira de Sousa José F., Sousa Délia M. F. e Oropeza Mireya C. R. Caracterização Geomecânica de Materiais Rochosos, de Origem Vulcânica, da Ilha da Madeira [Relatório]. - Madeira : Laboratório Regional de Engenharia Civil, s.d..

APÊNDICES
APÊNDICE A – PLANTAS DO TÚNEL DO CORTADO
APÊNDICE A.1 – ALTERAÇÃO DO TRAÇADO DO TÚNEL DO CORTADO
Figura 1: Alteração de traçado do Túnel do Cortado (GRID: CENORPLAN)
APÊNDICE A.2 – PLANTA COM SECÇÕES INSTRUMENTADAS DO TÚNEL DO CORTADO
APÊNDICE A.3 – PLANTA TOPOGRÁFICA DO TÚNEL DO CORTADO
Figura 5: Planta topográfica do Túnel do Cortado
Figura 6: Planta topográfica do Túnel do Cortado
Figura 7: Planta topográfica do Túnel do Cortado
APÊNDICE B – FICHAS DE CARACTERIZAÇÃO
1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geologia: Topo: Blocos basálticos de grandes dimensões (bombas) presentes na abóboda da galeria [Tufo brechóide].</td>
</tr>
<tr>
<td>Meio: Zona de tufo vulcânico de material argiloso menos resistente (W4-5).</td>
</tr>
<tr>
<td>Base: Tufos bastante alterados (W3-4) com pequenos a médios blocos de material vulcânico.</td>
</tr>
</tbody>
</table>

| Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 5 a 25 MPa | Intervalo de valores para GSI: 19 a 36 |
| Intervalo de valores para coesão: 100 a 200 kPa | Intervalo de valores para ângulo de atrito: 15 a 25 |

2- Geometria

| Largura útil: 9,60m | Área útil: 55,26m² |
| Altura útil: 6,80m | Recobrimento: 8,00m |

Sustimento primário aplicado: Cambotas metálicas HEB220 afastadas 1m; rede electrossoldada AQ50; 0,20m de betão projetado.

Faseamento de escavação
3- Leituras em obra

Marcas Superficiais

Figura 1. Gráfico do deslocamento vertical (mm) do alvo 1

Figura 2. Gráfico do deslocamento vertical (mm) do alvo 2
ESTUDO GEOMECÂNICO DO TÚNEL DO CORTADO NA ILHA DA MADEIRA

Figura 3. Gráfico do deslocamento vertical (mm) do alvo 3

4- Modelação

4.1 Malha e Geometria do Modelo
4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Maciço - Inicial</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões de 50% para zona 1</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustimento para zona 1</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões de 50% para zona 2</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação e aplicação do sustimento para zona 2</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 1: Tufos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 6MPa</td>
</tr>
<tr>
<td>Tufos: Alívio de tensões a 50%</td>
</tr>
</tbody>
</table>

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 130 kPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 70 kPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 90 kPa</td>
</tr>
</tbody>
</table>
ESTUDO GEOMECÂNICO DO TÚNEL DO CORTADO NA ILHA DA MADEIRA

5- Resultados

Marcas Superficiais

Modelo 1

<table>
<thead>
<tr>
<th>Stage Number</th>
<th>Deslocamento - Alvo 1</th>
<th>Deslocamento - Alvo 2</th>
<th>Deslocamento - Alvo 3</th>
<th>Datas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0001</td>
<td>0,0000</td>
<td>-0,0001</td>
<td>26-Jun</td>
</tr>
<tr>
<td>2</td>
<td>0,0008</td>
<td>0,0006</td>
<td>0,0006</td>
<td>11-Jul</td>
</tr>
<tr>
<td>3</td>
<td>-0,0005</td>
<td>-0,0011</td>
<td>-0,0007</td>
<td>22-Ago</td>
</tr>
<tr>
<td>4</td>
<td>-0,0013</td>
<td>-0,0024</td>
<td>-0,0015</td>
<td>17-Out</td>
</tr>
<tr>
<td>5</td>
<td>-0,0043</td>
<td>-0,0058</td>
<td>-0,0046</td>
<td>02-Fev</td>
</tr>
</tbody>
</table>

Modelo 2

<table>
<thead>
<tr>
<th>Stage Number</th>
<th>Deslocamento - Alvo 1</th>
<th>Deslocamento - Alvo 2</th>
<th>Deslocamento - Alvo 3</th>
<th>Datas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0001</td>
<td>0,0000</td>
<td>-0,0001</td>
<td>26-Jun</td>
</tr>
<tr>
<td>2</td>
<td>0,0008</td>
<td>0,0006</td>
<td>0,0006</td>
<td>11-Jul</td>
</tr>
<tr>
<td>3</td>
<td>-0,0002</td>
<td>-0,0007</td>
<td>-0,0004</td>
<td>22-Ago</td>
</tr>
<tr>
<td>4</td>
<td>-0,0012</td>
<td>-0,0023</td>
<td>-0,0014</td>
<td>17-Out</td>
</tr>
<tr>
<td>5</td>
<td>-0,0041</td>
<td>-0,0055</td>
<td>-0,0043</td>
<td>02-Fev</td>
</tr>
</tbody>
</table>

Modelo 3

<table>
<thead>
<tr>
<th>Stage Number</th>
<th>Deslocamento - Alvo 1</th>
<th>Deslocamento - Alvo 2</th>
<th>Deslocamento - Alvo 3</th>
<th>Datas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0001</td>
<td>0,0000</td>
<td>-0,0001</td>
<td>26-Jun</td>
</tr>
<tr>
<td>2</td>
<td>0,0008</td>
<td>0,0006</td>
<td>0,0006</td>
<td>11-Jul</td>
</tr>
<tr>
<td>3</td>
<td>-0,0002</td>
<td>-0,0007</td>
<td>-0,0004</td>
<td>22-Ago</td>
</tr>
<tr>
<td>4</td>
<td>-0,0012</td>
<td>-0,0023</td>
<td>-0,0014</td>
<td>17-Out</td>
</tr>
<tr>
<td>5</td>
<td>-0,0041</td>
<td>-0,0055</td>
<td>-0,0043</td>
<td>02-Fev</td>
</tr>
</tbody>
</table>

Modelo 4

<table>
<thead>
<tr>
<th>Stage Number</th>
<th>Deslocamento - Alvo 1</th>
<th>Deslocamento - Alvo 2</th>
<th>Deslocamento - Alvo 3</th>
<th>Datas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0001</td>
<td>0,0000</td>
<td>-0,0001</td>
<td>26-Jun</td>
</tr>
<tr>
<td>2</td>
<td>0,0008</td>
<td>0,0006</td>
<td>0,0006</td>
<td>11-Jul</td>
</tr>
<tr>
<td>3</td>
<td>-0,0002</td>
<td>-0,0007</td>
<td>-0,0004</td>
<td>22-Ago</td>
</tr>
<tr>
<td>4</td>
<td>-0,0012</td>
<td>-0,0023</td>
<td>-0,0014</td>
<td>17-Out</td>
</tr>
<tr>
<td>5</td>
<td>-0,0041</td>
<td>-0,0055</td>
<td>-0,0043</td>
<td>02-Fev</td>
</tr>
</tbody>
</table>
Figura 4. Comparação dos deslocamentos verticais do alvo 1

Figura 5. Comparação dos deslocamentos verticais do alvo 2
Observação: Para esta secção, escolheu-se de início uma combinação de RCU (resistência à compressão uniaxial) e GSI de 5MPa e 27, por forma a obter no RocLab parâmetros de resistência dentro dos intervalos estimados na cartografia de obra.

Através destes valores realizou-se alívios de tensão desde 30% a 70%, sendo que os resultados apresentaram uma grande discrepância no andamento final do gráfico, com deslocamentos superiores aos obtidos em obra.

Utilizou-se então uma combinação de 6 MPa de RCU e 25 de GSI, obtendo-se assim uma aproximação entre os valores da modelação e os de obra. Por forma a aproximar os valores do modelo aos reais sem provocar um aumento dos parâmetros de resistência acima do limite superior, efetuou-se um aumento do Em (módulo de deformabilidade) de 143MPa para 180MPa.
Túnel do Cortado

Ficha de caracterização Pk 0+609 (TU)

1- **Caracterização Geotécnica**

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
</table>

Geologia: A frente de escavação é constituída por tufo vulcânico com elevado índice de consolidação (W3) e por basalto medianamente consolidado e medianamente fraturado (W3F3).

O tufo vulcânico apresenta-se geotecnicamente semelhante ao basalto.

<table>
<thead>
<tr>
<th>Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 25 a 50 MPa</th>
<th>Intervalo de valores para GSI: 35 a 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de valores para coesão: 200 a 300 kPa</td>
<td>Intervalo de valores para ângulo de atrito: 25 a 35</td>
</tr>
</tbody>
</table>

2- **Geometria**

<table>
<thead>
<tr>
<th>Largura útil: 20,00m</th>
<th>Área útil: 149,14m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura útil: 8,70m</td>
<td>Recobrimento:117,00m</td>
</tr>
</tbody>
</table>

Sustentamento primário aplicado: Cambotas metálicas HEB200 afastadas 1m; rede electrossoldada AQ50; 0,20m de betão projetado.

Faseamento de escavação
3- Leituras em obra

Convergências

Figura 7. Gráfico das convergências (mm)

4- Modelação

4.1 Malha e Geometria do Modelo
4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maciço - Inicial</td>
</tr>
<tr>
<td>2</td>
<td>Alívio de tensões 50% para zona 1</td>
</tr>
<tr>
<td>3</td>
<td>Escavação e aplicação do sustimento na abóboda e nas laterais da zona 1</td>
</tr>
<tr>
<td>4</td>
<td>Alívio de tensões a 50% para zona 2</td>
</tr>
<tr>
<td>5</td>
<td>Escavação e aplicação do sustimento da zona 2</td>
</tr>
<tr>
<td>6</td>
<td>Alívio de tensões a 50% para zona 3</td>
</tr>
<tr>
<td>7</td>
<td>Escavação e aplicação do sustimento da zona 3</td>
</tr>
<tr>
<td>8</td>
<td>Alívio de tensões a 50% para zona 4</td>
</tr>
<tr>
<td>9</td>
<td>Escavação da zona 4</td>
</tr>
<tr>
<td>10</td>
<td>Alívio de tensões a 50% para zona 5</td>
</tr>
<tr>
<td>11</td>
<td>Escavação e aplicação do sustimento para a zona 5</td>
</tr>
<tr>
<td>12</td>
<td>Alívio de tensões a 50% para zona 6</td>
</tr>
<tr>
<td>13</td>
<td>Escavação e aplicação do sustimento para a zona 6</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

Material utilizado no Modelo 1: Basalto

<table>
<thead>
<tr>
<th>Propriedade</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial:</td>
<td>35MPa</td>
</tr>
<tr>
<td>GSI:</td>
<td>38</td>
</tr>
<tr>
<td>Coesão:</td>
<td>1936,8 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito:</td>
<td>34,8</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço:</td>
<td>4500 MPa</td>
</tr>
<tr>
<td>Comportamento:</td>
<td>Plástico</td>
</tr>
</tbody>
</table>

Basalto: Alívio de tensões a 50%

<table>
<thead>
<tr>
<th>Propriedade</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de deformabilidade do maciço:</td>
<td>2250 MPa</td>
</tr>
<tr>
<td>Comportamento:</td>
<td>Elástico</td>
</tr>
</tbody>
</table>

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

Material utilizado no Modelo 2

<table>
<thead>
<tr>
<th>Propriedade</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão:</td>
<td>350 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito:</td>
<td>54</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço:</td>
<td>4500 MPa</td>
</tr>
</tbody>
</table>

Material utilizado no Modelo 3

<table>
<thead>
<tr>
<th>Propriedade</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão:</td>
<td>200 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito:</td>
<td>64</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço:</td>
<td>4500 MPa</td>
</tr>
</tbody>
</table>

Material utilizado no Modelo 4

<table>
<thead>
<tr>
<th>Propriedade</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão:</td>
<td>250 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito:</td>
<td>58</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço:</td>
<td>4500 MPa</td>
</tr>
</tbody>
</table>
ESTUDO GEOMECÂNICO DO TÚNEL DO CORTADO NA ILHA DA MADEIRA

5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0,003</td>
<td>-0,001</td>
<td>-0,001</td>
<td>-0,001</td>
<td>-0,001</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>0,002</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Corda 4-5</td>
<td>-0,001</td>
<td>-0,001</td>
<td>-0,002</td>
<td>-0,001</td>
<td>-0,001</td>
</tr>
<tr>
<td>REMQ</td>
<td>1,882E-03</td>
<td>1,941E-03</td>
<td>1,783E-03</td>
<td>1,876E-03</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>9,675E-01</td>
<td>1,036E+00</td>
<td>8,564E-01</td>
<td>9,618E-01</td>
<td></td>
</tr>
</tbody>
</table>

Figura 8. Comparação das convergências

Observação: Para os valores mínimos de RCU e GSI desta secção, os parâmetros de resistência resultantes apresentaram-se fora do limite superior estimado pela cartografia em obra. Como tal numa primeira fase optou-se por aumentar apenas o valor do Em.

Como os valores para a corda 4-5 continuaram a apresentar uma diferença de 6mm, e para não elevar demasiado o Em utilizou-se uma nova combinação de RCU e GSI. Esta nova combinação de 35MPa de RCU e 38 de GSI apresentou um Em de 2192 MPa que revelou-se insuficiente para obter a melhor correspondência de dados. Para chegar aos valores acima indicados, foi necessário elevar o valor de Em até aos 4500MPa.
Túnel do Cortado

Ficha de caracterização Pk 0+619 (TU)

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
</table>

Geologia: A frente de escavação é constituída por tufo vulcânico com elevado índice de consolidação (W3) e por basalto medianamente consolidado e medianamente fraturado (W3F3).

O lado esquerdo da escavação encontra-se mais fraturado.

<table>
<thead>
<tr>
<th>Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 5 a 25 MPa</th>
<th>Intervalo de valores para GSI: 30 a 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de valores para coesão: 100 a 200 kPa</td>
<td>Intervalo de valores para ângulo de atrito: 15 a 25</td>
</tr>
</tbody>
</table>

2- Geometria

<table>
<thead>
<tr>
<th>Largura útil: 17,90m</th>
<th>Área útil: 128,39m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura útil: 8,38m</td>
<td>Recobrimento: 113,00m</td>
</tr>
</tbody>
</table>

Sustimento primário aplicado: Cambotas metálicas HEB200 afastadas 1m; rede electrossoldada AQ50; 0,20m de betão projetado.

Faseamento de escavação
3- Leituras em obra

Convergências
Figura 9. Gráfico das convergências (mm)

4- Modelação

4.1 Malha e Geometria do Modelo

4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Maciço - Inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões 50% para zona 1</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustimento na abóboda e nas laterais da zona 1</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões a 50% para zona 2</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação e aplicação do sustimento da zona 2</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Alívio de tensões a 50% para zona 3</td>
</tr>
</tbody>
</table>
Stage 7 Escavação e aplicação do sustimento da zona 3
Stage 8 Alívio de tensões a 50% para zona 4
Stage 9 Escavação da zona 4
Stage 10 Alívio de tensões a 50% para zona 5
Stage 11 Escavação e aplicação do sustimento para a zona 5
Stage 12 Alívio de tensões a 50% para zona 6
Stage 13 Escavação e aplicação do sustimento para a zona 6

4.3 Materiais utilizados

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 1: Basalto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 20MPa</td>
</tr>
<tr>
<td>Basalto: Alívio de tensões a 50%</td>
</tr>
</tbody>
</table>

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 350 kPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 100 kPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 200 kPa</td>
</tr>
</tbody>
</table>

5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>0,001</td>
<td>-0,001</td>
<td>-0,001</td>
<td>-0,001</td>
<td>-0,001</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>-0,004</td>
<td>-0,003</td>
<td>-0,002</td>
<td>-0,002</td>
<td>-0,002</td>
</tr>
<tr>
<td>Corda 4-5</td>
<td>-0,002</td>
<td>-0,005</td>
<td>-0,005</td>
<td>-0,004</td>
<td>-0,005</td>
</tr>
<tr>
<td>REMQ</td>
<td>2,304E-03</td>
<td>2,258E-03</td>
<td>2,081E-03</td>
<td>2,114E-03</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>1,516E+00</td>
<td>1,526E+00</td>
<td>1,441E+00</td>
<td>1,460E+00</td>
<td></td>
</tr>
</tbody>
</table>
Observação: Para o modelo inicial utilizou-se uma combinação de RCU de 20 MPa e um GSI de 30. Para esta combinação a corda 4-5 apresentou uma diferença de cerca de 12mm, pelo que foi necessário recorrer a outras combinações. Após experimentar várias combinações que foram revelando uma diminuição na diferença dos valores referente a corda 4-5, recorreu-se a um aumento do Em para a um RCU de 20MPa e um GSI de 35. Assim, mantiveram-se os valores dos parâmetros de resistência ligeiramente mais baixos que nas restantes combinações com um acréscimo no valor de Em para o dobro.
Túnel do Cortado

Ficha de caracterização Pk 0+629 (TU)

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
</table>

Geologia: A frente de escavação é constituída por tufo vulcânico com elevado índice de consolidação (W3) e por material basáltico, medianamente consolidado e medianamente a muito fraturado (W3 F3-4).

<table>
<thead>
<tr>
<th>Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 5 a 25 MPa</th>
<th>Intervalo de valores para GSI: 30 a 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de valores para coesão: 100 a 200 kPa</td>
<td>Intervalo de valores para ângulo de atrito: 15 a 25</td>
</tr>
</tbody>
</table>

2- Geometria

<table>
<thead>
<tr>
<th>Largura útil: 16,40m</th>
<th>Área útil: 114,65m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura útil: 8,22m</td>
<td>Recobrimento: 111,00m</td>
</tr>
</tbody>
</table>

Sustentamento primário aplicado: Cambotas metálicas HEB200 afastadas 1m; rede electrossoldada AQ50; 0,20m de betão projetado.

Faseamento de escavação
3- Leituras em obra

Convergências

Figura 11. Gráfico das convergências (mm)

4- Modelação

4.1 Malha e Geometria do Modelo
4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Maciço - Inicial</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões 50% para zona 1</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustimento na abóbada e nas laterais da zona 1</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões a 50% para zona 2</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação e aplicação do sustimento da zona 2</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Alívio de tensões a 50% para zona 3</td>
</tr>
<tr>
<td>Stage 7</td>
<td>Escavação e aplicação do sustimento da zona 3</td>
</tr>
<tr>
<td>Stage 8</td>
<td>Alívio de tensões a 50% para zona 4</td>
</tr>
<tr>
<td>Stage 9</td>
<td>Escavação da zona 4</td>
</tr>
<tr>
<td>Stage 10</td>
<td>Alívio de tensões a 50% para zona 5</td>
</tr>
<tr>
<td>Stage 11</td>
<td>Escavação e aplicação do sustimento para a zona 5</td>
</tr>
<tr>
<td>Stage 12</td>
<td>Alívio de tensões a 50% para zona 6</td>
</tr>
<tr>
<td>Stage 13</td>
<td>Escavação e aplicação do sustimento para a zona 6</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 1: Basalto</th>
<th>Resistência do material rochoso intacto à compressão uniaxial: 25MPa</th>
<th>GSI: 33</th>
<th>Coesão: 1185kPa</th>
<th>Ângulo de atrito: 31,32</th>
<th>Módulo de deformabilidade do maciço: 1115 MPa</th>
<th>Comportamento: Plástico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basalto: Alívio de tensões a 50%</td>
<td>Módulo de deformabilidade do maciço: 557 MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comportamento: Elástico</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tufos: Alívio de tensões a 50%</td>
<td>Módulo de deformabilidade do maciço: 495,5 MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comportamento: Elástico</td>
</tr>
</tbody>
</table>

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 2</th>
<th>Basalto</th>
<th>Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão</td>
<td>300 kPa</td>
<td>260 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito: 45</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço: 1115 MPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de do</td>
<td></td>
<td>991 MPa</td>
</tr>
</tbody>
</table>
Material utilizado no Modelo 3

<table>
<thead>
<tr>
<th>Material</th>
<th>Basalto</th>
<th>Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão:</td>
<td>90 kPa</td>
<td>80 kPa</td>
</tr>
<tr>
<td>Ângulo de</td>
<td>ângulo de atrito: 58</td>
<td>ângulo de atrito: 57</td>
</tr>
<tr>
<td>atrito:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Módulo</td>
<td>1115 MPa</td>
<td>991 MPa</td>
</tr>
<tr>
<td>de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deformabilidade do maciço:</td>
<td>1115 MPa</td>
<td>991 MPa</td>
</tr>
</tbody>
</table>

Material utilizado no Modelo 4

<table>
<thead>
<tr>
<th>Material</th>
<th>Basalto</th>
<th>Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão:</td>
<td>200 kPa</td>
<td>180 kPa</td>
</tr>
<tr>
<td>Ângulo de</td>
<td>ângulo de atrito: 52</td>
<td>ângulo de atrito: 48</td>
</tr>
<tr>
<td>atrito:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Módulo</td>
<td>1115 MPa</td>
<td>991 MPa</td>
</tr>
<tr>
<td>de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deformabilidade do maciço:</td>
<td>1115 MPa</td>
<td>991 MPa</td>
</tr>
</tbody>
</table>

5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0,003</td>
<td>-0,002</td>
<td>-0,002</td>
<td>-0,001</td>
<td>-0,002</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,003</td>
</tr>
<tr>
<td>Corda 4-5</td>
<td>-0,004</td>
<td>-0,007</td>
<td>-0,007</td>
<td>-0,006</td>
<td>-0,007</td>
</tr>
<tr>
<td>REMQ</td>
<td>1,958E-03</td>
<td>1,943E-03</td>
<td>1,471E-03</td>
<td>1,532E-03</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>4,501E-01</td>
<td>4,442E-01</td>
<td>3,386E-01</td>
<td>3,385E-01</td>
<td></td>
</tr>
</tbody>
</table>

Figura 12. Comparação das convergências
Observação: Por ser um modelo constituído por 2 tipos de materiais com características resistentes semelhantes, optou-se por começar a modelação com a mesma combinação de RCU e GSI para ambos os materiais. Como tal, o basalto e o tufo utilizados na modelação apresentavam uma RCU de 20 MPa e um GSI de 30.

Após compilação dos resultados as cordas 1-5 e 4-5 revelaram diferenças para as convergências de obra, que chegavam a cerca de 7mm para a corda 4-5. Procedeu-se então a um aumento progressivo do Em do basalto, do qual surtiu um melhoramento em ambas as cordas.

Como ambos os materiais, segundo a cartografia, exibiam resistências semelhantes optou-se por definí-los com uma nova combinação de 25 MPa para RCU e 33 para GSI. Como diferentes alívios de tensão não mostraram melhoramentos nos dados, optou-se por não subir o valor do Em dos materiais para não aumentar a pequena diferença apresentada pelas cordas 1-4 e 1-5.
Ficha de caracterização Pk 0+639 (TU)

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
</table>

Geologia: A frente de escavação é constituída por um basalto medianamente alterado e medianamente fracturado (W3F3) que é atravessado por um filão sub-vertical também de natureza basáltica, mas de melhores características geológicas-geotécnicas (W3-2, F3-2)

| Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 25 a 50 MPa |
| Intervalo de valores para GSI: 28 a 37 |

| Intervalo de valores para coesão: 100 a 200 kPa |
| Intervalo de valores para ângulo de atrito: 15 a 25 |

2- Geometria

| Largura útil: 15,36m | Área útil: 105,12m² |
| Altura útil: 8,00m | Recobrimento: 109,00m |

Sustentamento primário aplicado: Cambotas metálicas HEB200 afastadas 1m; rede electrossoldada AQ50; 0,20m de betão projetado.

Faseamento de escavação
3- Leituras em obra

Convergências

Figura 13. Gráfico das convergências (mm)

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Maciço - Inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões 50% para zona 1</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustento na abóboda e nas laterais da zona 1</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões a 50% para zona 2</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação e aplicação do sustento da zona 2</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Alívio de tensões a 50% para zona 3</td>
</tr>
</tbody>
</table>
Stage 7 Escavação e aplicação do sustimento da zona 3
Stage 8 Alívio de tensões a 50% para zona 4
Stage 9 Escavação da zona 4
Stage 10 Alívio de tensões a 50% para zona 5
Stage 11 Escavação e aplicação do sustimento para a zona 5
Stage 12 Alívio de tensões a 50% para zona 6
Stage 13 Escavação e aplicação do sustimento para a zona 6

4.3 Materiais utilizados

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 1: Basalto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 25MPa</td>
</tr>
<tr>
<td>Basalto: Alívio de tensões a 50%</td>
</tr>
</tbody>
</table>

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 300 kPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 80 kPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 200 kPa</td>
</tr>
</tbody>
</table>

5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0,002</td>
<td>-0,002</td>
<td>-0,002</td>
<td>-0,002</td>
<td>-0,002</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>-0,004</td>
<td>-0,004</td>
<td>-0,004</td>
<td>-0,003</td>
<td>-0,004</td>
</tr>
<tr>
<td>Corda 4-5</td>
<td>-0,006</td>
<td>-0,009</td>
<td>-0,009</td>
<td>-0,008</td>
<td>-0,009</td>
</tr>
<tr>
<td>REMQ</td>
<td>1,593E-03</td>
<td>1,808E-03</td>
<td>1,145E-03</td>
<td>1,577E-03</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>1,703E-01</td>
<td>2,358E-01</td>
<td>1,265E-01</td>
<td>1,970E-01</td>
<td></td>
</tr>
</tbody>
</table>
Figura 14. Comparação das convergências

Observação: Para a secção em questão optou-se por modelar inicialmente com uma combinação de 25MPa de RCU e 28 de GSI. Através desta combinação foi possível observar uma diferença mínima nas duas primeiras cordas (cerca de 1mm) e uma diferença de 5mm para a corda 4-5.

Devido à diferença mínima nas duas primeiras cordas, invés de tentar uma nova combinação, procedeu-se a um ajuste em RocLab do valor de mi da rocha. Ajuste esse que resultou numa correspondência perfeita entre as duas primeiras cordas e numa aproximação da corda 4-5, ficando a sua diferença final em cerca de 3mm.
ESTUDO GEOMECÂNICO DO TÚNEL DO CORTADO NA ILHA DA MADEIRA

Túnel do Cortado

Ficha de caracterização Pk 0+649 (TU)

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
</table>

Geologia: À esquerda a frente da escavação é mais basáltica, encontrando-se medianamente alterada e medianamente fraturada (W3F3).
À direita é maioritariamente constituída por tufo vulcânico que se apresenta consolidado W4-3

Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 25 a 50 MPa
Intervalo de valores para GSI: 32 a 40

Intervalo de valores para coesão: 100 a 200 kPa
Intervalo de valores para ângulo de atrito: 15 a 25

2- Geometria

<table>
<thead>
<tr>
<th>Largura útil: 13,71m</th>
<th>Área útil: 90,06m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura útil: 7,74m</td>
<td>Recobrimento: 108,00m</td>
</tr>
</tbody>
</table>

Sustentação primário aplicado: Cambotas metálicas HEB200 afastadas 1m; rede electrossoldada AQ50; 0,20m de betão projetado.

Faseamento de escavação
3- Leituras em obra

Convergências

Figura 15. Gráfico das convergências (mm)

4- Modelação

4.1 Malha e Geometria do Modelo
4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Maciço - Inicial</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões 50% para zona 1</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustimento na abóboda e nas laterais da zona 1</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões a 50% para zona 2</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação e aplicação do sustimento da zona 2</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Alívio de tensões a 50% para zona 3</td>
</tr>
<tr>
<td>Stage 7</td>
<td>Escavação e aplicação do sustimento da zona 3</td>
</tr>
<tr>
<td>Stage 8</td>
<td>Alívio de tensões a 50% para zona 4</td>
</tr>
<tr>
<td>Stage 9</td>
<td>Escavação da zona 4</td>
</tr>
<tr>
<td>Stage 10</td>
<td>Alívio de tensões a 50% para zona 5</td>
</tr>
<tr>
<td>Stage 11</td>
<td>Escavação e aplicação do sustimento para a zona 5</td>
</tr>
<tr>
<td>Stage 12</td>
<td>Alívio de tensões a 50% para zona 6</td>
</tr>
<tr>
<td>Stage 13</td>
<td>Escavação e aplicação do sustimento para a zona 6</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 1: Basalto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 25MPa</td>
</tr>
<tr>
<td>Basalto: Alívio de tensões a 50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 1: Tufos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 25MPa</td>
</tr>
<tr>
<td>Tufos: Alívio de tensões a 50%</td>
</tr>
</tbody>
</table>

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basalto</td>
</tr>
<tr>
<td>Tufo</td>
</tr>
<tr>
<td>Coesão: 300 kPa</td>
</tr>
<tr>
<td>Coesão: 290 kPa</td>
</tr>
</tbody>
</table>
Material utilizado no Modelo 3

<table>
<thead>
<tr>
<th>Basalto</th>
<th>Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 90 kPa</td>
<td>Coesão: 80 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito: 58</td>
<td>Ângulo de atrito: 56</td>
</tr>
<tr>
<td>Módulo deformabilidade do maciço: 1043 MPa</td>
<td>Módulo deformabilidade do maciço: 927 MPa</td>
</tr>
</tbody>
</table>

Material utilizado no Modelo 4

<table>
<thead>
<tr>
<th>Basalto</th>
<th>Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 200 kPa</td>
<td>Coesão: 180 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito: 52</td>
<td>Ângulo de atrito: 48</td>
</tr>
<tr>
<td>Módulo deformabilidade do maciço: 1043 MPa</td>
<td>Módulo deformabilidade do maciço: 927 MPa</td>
</tr>
</tbody>
</table>

5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0,001</td>
<td>-0,001</td>
<td>-0,002</td>
<td>-0,001</td>
<td>-0,001</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>-0,003</td>
<td>-0,002</td>
<td>-0,002</td>
<td>-0,002</td>
<td>-0,002</td>
</tr>
<tr>
<td>Corda 4-5</td>
<td>-0,001</td>
<td>-0,005</td>
<td>-0,002</td>
<td>-0,004</td>
<td>-0,004</td>
</tr>
<tr>
<td>REMQ</td>
<td>2,358E-03</td>
<td>2,037E-03</td>
<td>1,876E-03</td>
<td>1,879E-03</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>1,506E+00</td>
<td>1,433E+00</td>
<td>1,326E+00</td>
<td>1,313E+00</td>
<td></td>
</tr>
</tbody>
</table>

Figura 16. Comparação das convergências
Observação: Por ser um modelo constituído por 2 tipos de materiais com características resistentes idênticas, optou-se por começar a modelação com a mesma combinação de RCU e GSI para ambos os materiais e ao longo dos modelos ir progressivamente ajustando. Como tal, o basalto e o tufo utilizados na modelação apresentavam uma RCU de 25 MPa e um GSI de 32.

Como para a primeira modelação apresentou valores coincidentes para as duas primeiras cordas, procedeu-se a uma afinação nos valores de mi de ambos os materiais até obter a melhor correspondência entre todas as cordas, fazendo assim baixar 2mm na anterior diferença para a terceira corda.
Túnel do Cortado

Ficha de caracterização Pk 0+659 (TU)

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geologia: À esquerda a frente da escavação é mais basáltica, encontrando se medianamente alterada e medianamente fraturada (W3F3). À direita é majoritariamente constituída por tufo vulcânico que se apresenta consolidado w4-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 25 a 50 MPa</th>
<th>Intervalo de valores para GSI: 30 a 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de valores para coesão: 100 a 200 kPa</td>
<td>Intervalo de valores para ângulo de atrito: 15 a 25</td>
</tr>
</tbody>
</table>

2- Geometria

<table>
<thead>
<tr>
<th>Largura útil: 13,10m</th>
<th>Área útil: 81,50m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura útil: 7,53m</td>
<td>Recobrimento: 107,00m</td>
</tr>
</tbody>
</table>

Sustimento primário aplicado: Cambotas metálicas HEB200 afastadas 1m; rede electrossoldada AQ50; 0,20m de betão projetado.

Faseamento de escavação
ESTUDO GEOMECÂNICO DO TÚNEL DO CORTADO NA ILHA DA MADEIRA

3- Leituras em obra

Convergências

Figura 17. Gráfico das convergências (mm)

4- Modelação

4.1 Malha e Geometria do Modelo
4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maciço - Inicial</td>
</tr>
<tr>
<td>2</td>
<td>Alívio de tensões 50% para zona 1</td>
</tr>
<tr>
<td>3</td>
<td>Escavação e aplicação do sustimento na abóbada e nas laterais da zona 1</td>
</tr>
<tr>
<td>4</td>
<td>Alívio de tensões a 50% para zona 2</td>
</tr>
<tr>
<td>5</td>
<td>Escavação e aplicação do sustimento da zona 2</td>
</tr>
<tr>
<td>6</td>
<td>Alívio de tensões a 50% para zona 3</td>
</tr>
<tr>
<td>7</td>
<td>Escavação e aplicação do sustimento da zona 3</td>
</tr>
<tr>
<td>8</td>
<td>Alívio de tensões a 50% para zona 4</td>
</tr>
<tr>
<td>9</td>
<td>Escavação da zona 4</td>
</tr>
<tr>
<td>10</td>
<td>Alívio de tensões a 50% para zona 5</td>
</tr>
<tr>
<td>11</td>
<td>Escavação e aplicação do sustimento para a zona 5</td>
</tr>
<tr>
<td>12</td>
<td>Alívio de tensões a 50% para zona 6</td>
</tr>
<tr>
<td>13</td>
<td>Escavação e aplicação do sustimento para a zona 6</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

Material utilizado no Modelo 1: Basalto

| Resistência do material rochoso intacto à compressão uniaxial: 25MPa | GSI: 24 | Coesão: 999,2kPa | Ângulo de atrito: 28,52 | Módulo de deformabilidade do maciço: 500 MPa | Comportamento: Plástico |

Basalto: Alívio de tensões a 50% | Módulo de deformabilidade do maciço: 250 MPa | Comportamento: Elástico

Material utilizado no Modelo 1: Tufo

| Resistência do material rochoso intacto à compressão uniaxial: 25MPa | GSI: 24 | Coesão: 848,5kPa | Ângulo de atrito: 24,87 | Módulo de deformabilidade do maciço: 700 MPa | Comportamento: Plástico |

Tufo: Alívio de tensões a 50% | Módulo de deformabilidade do maciço: 350 MPa | Comportamento: Elástico

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

<table>
<thead>
<tr>
<th>Basalto</th>
<th>Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 190 kPa</td>
<td>Coesão: 230 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito: 39</td>
<td>Ângulo de atrito: 42</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço: 500 MPa de do</td>
<td>Módulo de deformabilidade do maciço: 700 MPa de do</td>
</tr>
</tbody>
</table>
Material utilizado no Modelo 3

<table>
<thead>
<tr>
<th></th>
<th>Basalto</th>
<th>Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão</td>
<td>80 kPa</td>
<td>90 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito</td>
<td>55</td>
<td>58</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço</td>
<td>500 MPa</td>
<td>700 MPa</td>
</tr>
</tbody>
</table>

Material utilizado no Modelo 4

<table>
<thead>
<tr>
<th></th>
<th>Basalto</th>
<th>Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão</td>
<td>100 kPa</td>
<td>120 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço</td>
<td>500 MPa</td>
<td>700 MPa</td>
</tr>
</tbody>
</table>

5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0,001</td>
<td>-0,002</td>
<td>-0,002</td>
<td>-0,002</td>
<td>-0,001</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>-0,002</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,002</td>
<td>-0,003</td>
</tr>
<tr>
<td>Corda 4-5</td>
<td>-0,005</td>
<td>-0,006</td>
<td>-0,007</td>
<td>-0,006</td>
<td>-0,006</td>
</tr>
<tr>
<td>REMQ</td>
<td>1,099E-03</td>
<td>1,321E-03</td>
<td>9,241E-04</td>
<td>9,149E-03</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>5,652E-01</td>
<td>7,976E-01</td>
<td>6,818E-01</td>
<td>5,840E-01</td>
<td></td>
</tr>
</tbody>
</table>

Figura 18. Comparação das convergências
Observação: Como efetuado até aqui nos modelos com 2 materiais, para o primeiro modelo optou-se por utilizar para ambos os materiais uma combinação de 25MPa para a RCU e um GSI de 24. Para esta combinação obtivemos uma diferença de cerca de 3mm para a corda 4-5 e uma diferença de 2mm para a corda 1-5. Como tal, tentou-se através do ajuste do mi e dos módulos de deformabilidade chegar à melhor combinação.

Assim, procedeu-se a um aumento gradual de ambos os Em dos materiais, sendo visível através das várias tentativas que neste caso, e contrariamente ao que tinha sido possível observar até aqui, os melhores resultados eram obtidos com os tufos a apresentarem um Em superior ao basalto.
Túnel do Cortado

Ficha de caracterização Pk 0+669 (TU)

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geologia: À esquerda a frente da escavação é mais basáltica, encontrando se medianamente alterada e medianamente fraturada (W3F3). À direita é maioritariamente constituída por tufo vulcânico que se apresenta consolidado w4-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 25 a 50 MPa</th>
<th>Intervalo de valores para GSI: 24 a 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de valores para coesão: 100 a 200 kPa</td>
<td>Intervalo de valores para ângulo de atrito: 15 a 25</td>
</tr>
</tbody>
</table>

2- Geometria

<table>
<thead>
<tr>
<th>Largura útil: 13,10m</th>
<th>Área útil: 81,50m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura útil: 7,53m</td>
<td>Recobrimento: 107,00m</td>
</tr>
<tr>
<td>Sustimento primário aplicado: Cambotas metálicas HEB200 afastadas 1m; rede electrossoldada AQ50; 0,20m de betão projetado.</td>
<td></td>
</tr>
</tbody>
</table>

Faseamento de escavação
3- Leituras em obra

Convergências

Figura 19. Gráfico das convergências (mm)

4- Modelação

4.1 Malha e Geometria do Modelo
4.2 Etapas utilizadas

<table>
<thead>
<tr>
<th>Stage</th>
<th>Etapa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maciço - Inicial</td>
</tr>
<tr>
<td>2</td>
<td>Alívio de tensões 50% para zona 1</td>
</tr>
<tr>
<td>3</td>
<td>Escavação e aplicação do sustimento na abóboda e nas laterais da zona 1</td>
</tr>
<tr>
<td>4</td>
<td>Alívio de tensões a 50% para zona 2</td>
</tr>
<tr>
<td>5</td>
<td>Escavação e aplicação do sustimento da zona 2</td>
</tr>
<tr>
<td>6</td>
<td>Alívio de tensões a 50% para zona 3</td>
</tr>
<tr>
<td>7</td>
<td>Escavação e aplicação do sustimento da zona 3</td>
</tr>
<tr>
<td>8</td>
<td>Alívio de tensões a 50% para zona 4</td>
</tr>
<tr>
<td>9</td>
<td>Escavação da zona 4</td>
</tr>
<tr>
<td>10</td>
<td>Alívio de tensões a 50% para zona 5</td>
</tr>
<tr>
<td>11</td>
<td>Escavação e aplicação do sustimento para a zona 5</td>
</tr>
<tr>
<td>12</td>
<td>Alívio de tensões a 50% para zona 6</td>
</tr>
<tr>
<td>13</td>
<td>Escavação e aplicação do sustimento para a zona 6</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

<table>
<thead>
<tr>
<th>Material no Modelo 1: Basalto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 25MPa</td>
</tr>
</tbody>
</table>

| Basalto: Alívio de tensões a 50% | Módulo de deformabilidade do maciço: 340 MPa | Comportamento: Elástico |

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 1: Tufos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 25MPa</td>
</tr>
</tbody>
</table>

| Tufos: Alívio de tensões a 50% | Módulo de deformabilidade do maciço: 300 MPa | Comportamento: Elástico |

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basalto</td>
</tr>
<tr>
<td>Coesão: 290 kPa</td>
</tr>
<tr>
<td>Tufo</td>
</tr>
<tr>
<td>Coesão: 260 kPa</td>
</tr>
</tbody>
</table>
Material utilizado no Modelo 3

<table>
<thead>
<tr>
<th></th>
<th>Basalto</th>
<th>Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão</td>
<td>90 kPa</td>
<td>80 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito</td>
<td>58</td>
<td>56</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço</td>
<td>680 MPa</td>
<td>600 MPa</td>
</tr>
</tbody>
</table>

Material utilizado no Modelo 4

<table>
<thead>
<tr>
<th></th>
<th>Basalto</th>
<th>Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão</td>
<td>150 kPa</td>
<td>130 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço</td>
<td>680 MPa</td>
<td>600 MPa</td>
</tr>
</tbody>
</table>

5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>0,000</td>
<td>-0,001</td>
<td>-0,001</td>
<td>-0,001</td>
<td>-0,001</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>-0,002</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,003</td>
</tr>
<tr>
<td>Corda 4-5</td>
<td>-0,004</td>
<td>-0,007</td>
<td>-0,007</td>
<td>-0,007</td>
<td>-0,007</td>
</tr>
<tr>
<td>REMQ</td>
<td>1,820E-03</td>
<td>2,300E-03</td>
<td>1,787E-03</td>
<td>1,917E-03</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>1,426E+00</td>
<td>1,976E+00</td>
<td>1,758E+00</td>
<td>1,604E+00</td>
<td></td>
</tr>
</tbody>
</table>

Figura 20. Comparação das convergências
Observação: Seguindo o mesmo raciocínio da secção anterior, começou-se por adotar uma combinação de RCU de 25MPa e um GSI de 24. Apesar da proximidade dos valores das duas primeiras cordas, tentou-se através da variação do alívio de tensões e de ajustes de mi e Em conseguir uma melhor correspondência.

A melhor correspondência, ao contrário da secção anterior, foi atingida para um Em de basalto superior ao do tufo em cerca de 80MPa.
Ficha de caracterização Pk 3+017(TU)

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
</table>

Geologia: Topo: Tufos brechóides medianamente alterados (W3-4), com bombas vulcânicas (30cm) de material resistente (basalto).

Meio: Zona argilosa (cinzas vulcânicas), com cerca de 1,5m de espessura, de cor vermelha. Esta zona apresenta fracas características geotécnicas (W4-5). [Tufo argiloso]

Em baixo: Tufo brechóide com pequenos blocos de material basáltico. O tufo apresenta elevado grau de alteração (W4-5)

<table>
<thead>
<tr>
<th>Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 1 a 5 MPa</th>
<th>Intervalo de valores para GSI: 17 a 38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de valores para coesão: 100 a 200 kPa</td>
<td>Intervalo de valores para ângulo de atrito: 15 a 25</td>
</tr>
</tbody>
</table>

2- Geometria

<table>
<thead>
<tr>
<th>Largura útil: 9,60m</th>
<th>Área útil: 55,26m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura útil: 6,80m</td>
<td>Recobrimento: 54m</td>
</tr>
</tbody>
</table>

Sustentimento primário aplicado: Cambotas metálicas HEB160 afastadas 1m; rede electrossoldada AQ50; 0,10m de betão projetado.

Faseamento de escavação
3- Leituras em obra

Convergências

Figura 21. Gráfico das convergências (mm)

4- Modelação

4.1 Malha e Geometria do Modelo
4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Maciço - Inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões de 50% para zona 1</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustimento para zona 1</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões de 50% para zona 2</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação e aplicação do sustimento para zona 2</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

<table>
<thead>
<tr>
<th>Material no Modelo 1: Tufo superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 5MPa</td>
</tr>
<tr>
<td>Tufo superior: Alívio de tensões a 50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material no Modelo 1: Tufo Inferior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 5MPa</td>
</tr>
<tr>
<td>Tufo inferior: Alívio de tensões a 50%</td>
</tr>
</tbody>
</table>

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tufo superior</td>
</tr>
<tr>
<td>Coesão: 150 kPa</td>
</tr>
</tbody>
</table>

Material utilizado no Modelo 3

<table>
<thead>
<tr>
<th>Tufo superior</th>
<th>Tufo inferior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão:</td>
<td>Ângulo de</td>
</tr>
<tr>
<td>Coesão:</td>
<td>Ângulo de</td>
</tr>
</tbody>
</table>
Material utilizado no Modelo 4

<table>
<thead>
<tr>
<th>Tufo superior</th>
<th>Tufo inferior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 90 kPa</td>
<td>Coesão: 80 kPa</td>
</tr>
<tr>
<td>Ângulo de atrito: 42</td>
<td>Ângulo de atrito: 40</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço: 200 MPa</td>
<td>Módulo de deformabilidade do maciço: 180 MPa</td>
</tr>
</tbody>
</table>

5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.005</td>
<td>-0.002</td>
<td>-0.004</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>-0.003</td>
<td>-0.008</td>
<td>-0.005</td>
<td>-0.002</td>
<td>-0.003</td>
</tr>
<tr>
<td>Corda 1-7</td>
<td>-0.018</td>
<td>-0.017</td>
<td>-0.013</td>
<td>-0.008</td>
<td>-0.012</td>
</tr>
<tr>
<td>Corda 6-7</td>
<td>-0.006</td>
<td>-0.001</td>
<td>-0.002</td>
<td>-0.003</td>
<td>-0.004</td>
</tr>
<tr>
<td>Corda 1-6</td>
<td>-0.005</td>
<td>-0.017</td>
<td>-0.013</td>
<td>-0.008</td>
<td>-0.012</td>
</tr>
<tr>
<td>REMQ</td>
<td>6,209E-03</td>
<td>4,902E-03</td>
<td>5,769E-03</td>
<td>4,830E-03</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>1,100E+00</td>
<td>7,586E-01</td>
<td>5,633E-01</td>
<td>5,859E-01</td>
<td></td>
</tr>
</tbody>
</table>

Figura 22. Comparação das convergências

Observação: Para esta secção começou-se por efetuar modelos considerando apenas um tipo de material (tufos) para uma combinação de 5MPa de RCU e 26 de GSI. Os resultados disparam nas...
cordas 1-5, 1-7 e 1-6 (a maior diferença com cerca de 27mm), obrigaram a várias tentativas que resultaram na adoção de um modelo com 2 materiais.

A introdução de um outro tufo de características semelhantes apresentou um melhoramento em quase todas as cordas, sendo que foram alteradas as características do Em gradualmente até obter uma correspondência na maioria das cordas.
Túnel do Cortado

Ficha de caracterização Pk 3+036(TU)

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
</table>
| Geologia: No topo: Tufos medianamente alterados (w3-4), com bombas vulcânicas de material resistente (basalto).
A meio: Existência de água (umidade). Cinzas vulcânicas muito finas (argilosas) de cor vermelha (w4-5).
Na base: Tufos com pequenos blocos de material basáltico com elevado grau de alteração (w4-5) |

| Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 1 a 5 MPa | Intervalo de valores para GSI: 12 a 36 |
| Intervalo de valores para coesão: 100 a 200 kPa | Intervalo de valores para ângulo de atrito: 15 a 25 |

2- Geometria

<table>
<thead>
<tr>
<th>Largura útil: 9,60m</th>
<th>Área útil: 55,26m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura útil: 6,80m</td>
<td>Recobrimento: 53,00m</td>
</tr>
<tr>
<td>Sustimento primário aplicado: Cambotas metálicas HEB160 afastadas 1m; rede electrossoldada AQ50; 0,10m de betão projetado.</td>
<td></td>
</tr>
</tbody>
</table>

Faseamento de escavação
3- Leituras em obra

Convergências

Figura 23. Gráfico das convergências (mm)

4- Modelação

4.1 Malha e Geometria do Modelo
4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Maciço - Inicial</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões de 50% para zona 1</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustimento para zona 1</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões de 50% para zona 2</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação e aplicação do sustimento para zona 2</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

<table>
<thead>
<tr>
<th>Material utilizados no Modelo 1: Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 5MPa</td>
</tr>
<tr>
<td>Tufo: Alívio de tensões a 50%</td>
</tr>
</tbody>
</table>

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 2</th>
<th>Coesão: 160 kPa</th>
<th>Ângulo de atrito: 36</th>
<th>Módulo de deformabilidade do maciço: 250 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material utilizado no Modelo 3</td>
<td>Coesão: 70 kPa</td>
<td>Ângulo de atrito: 50</td>
<td>Módulo de deformabilidade do maciço: 250 MPa</td>
</tr>
<tr>
<td>Material utilizado no Modelo 4</td>
<td>Coesão: 90 kPa</td>
<td>Ângulo de atrito: 42</td>
<td>Módulo de deformabilidade do maciço: 250 MPa</td>
</tr>
</tbody>
</table>

5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0,001</td>
<td>-0,004</td>
<td>-0,002</td>
<td>-0,001</td>
<td>-0,002</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>0,000</td>
<td>-0,004</td>
<td>-0,002</td>
<td>-0,001</td>
<td>-0,002</td>
</tr>
<tr>
<td>Corda 1-7</td>
<td>-0,001</td>
<td>0,000</td>
<td>-0,001</td>
<td>0,000</td>
<td>-0,001</td>
</tr>
<tr>
<td>Corda 6-7</td>
<td>-0,001</td>
<td>-0,001</td>
<td>-0,007</td>
<td>-0,001</td>
<td>-0,002</td>
</tr>
<tr>
<td>Corda1-6</td>
<td>0,000</td>
<td>0,000</td>
<td>-0,001</td>
<td>0,000</td>
<td>-0,001</td>
</tr>
<tr>
<td>REMQ</td>
<td>2,534E-03</td>
<td>3,110E-03</td>
<td>5,733E-04</td>
<td>1,317E-03</td>
<td></td>
</tr>
</tbody>
</table>
Observação: Para esta secção, iniciou-se a modelação com uma combinação de 5MPa de RCU e um GSI de 26. Para a primeira modelação com um alívio de 50%, o modelo apresentou uma diferença para as duas primeiras cordas de cerca de 10mm.

Efetuou-se outros modelos com diferentes combinações até chegar a uma combinação de 5MPa para RCU e 29 para GSI, que apresentava uma diferença para as duas primeiras cordas de cerca de 5mm. Tentou-se melhorar os resultados através de alívios de tensões na ordem dos 30% e 70% sem qualquer sucesso, pelo que subiu-se o valore referente ao Em até obter a melhor correspondência.

A partir dos 250MPa do Em, o modelo passou a exibir uma mínima variação nos resultados, sendo que uma melhor correspondência de deslocamentos só seria atingida para grandes aumentos do Em.
ESTUDO GEOMECÂNICO DO TÚNEL DO CORTADO NA ILHA DA MADEIRA

Túnel do Cortado

Ficha de caracterização Pk 3+082(TU)

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geologia: No topo: Tufos medianamente alterados (w3-4), com bombas vulcânicas de material resistente (basalto).</td>
</tr>
<tr>
<td>A meio: Existência de água (humidade). Cinzas vulcânicas muito finas (argilosas) de cor vermelha (w4-5).</td>
</tr>
<tr>
<td>Na base: Tufos com pequenos blocos de material basáltico com elevado grau de alteração (w4-5)</td>
</tr>
</tbody>
</table>

| Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 1 a 5 MPa | Intervalo de valores para GSI: 12 a 33 |
| Intervalo de valores para coesão: 100 a 200 kPa | Intervalo de valores para ângulo de atrito: 15 a 25 |

2- Geometria

| Largura útil: 13,10m | Area útil: 81,50m² |
| Altura útil: 7,53m | Recobrimento: 43,00m |

Sustimento primário aplicado: Cambotas metálicas HEB180 afastadas 1m; rede electrossoldada AQ50; 0,10m de betão projetado.

Faseamento de escavação
3- Leituras em obra

Convergências

Figura 25. Gráfico das convergências (mm)

4- Modelação

4.1 Malha e Geometria do Modelo
4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Maciço - Inicial</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões 50% para zonas 1 e 2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustimento para zonas 1 e 2</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões a 50% para zona 3</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação da zona 3</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Alívio de tensões a 50% para zona 4</td>
</tr>
<tr>
<td>Stage 7</td>
<td>Escavação da zona 4</td>
</tr>
<tr>
<td>Stage 8</td>
<td>Alívio de tensões a 50% para zona 5</td>
</tr>
<tr>
<td>Stage 9</td>
<td>Escavação e aplicação do sustimento para a zona 5</td>
</tr>
<tr>
<td>Stage 10</td>
<td>Alívio de tensões a 50% para zona 6</td>
</tr>
<tr>
<td>Stage 11</td>
<td>Escavação e aplicação do sustimento para a zona 6</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

Material utilizado no Modelo 1: Tufo

| Resistência do material rochoso intacto à compressão uniaxial: 5MPa | GSI: 26 | Coesão: 177,7kPa | Ângulo de atrito: 25,50 | Módulo de deformabilidade do maciço: 220 MPa | Comportamento: Plástico |

Tufo: Alívio de tensões a 30% | Módulo de deformabilidade do maciço: 154 MPa | Comportamento: Elástico

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

Material utilizado no Modelo 2

| Coesão: 200 kPa | Ângulo de atrito: 35 | Módulo de deformabilidade do maciço: 220 MPa |

Material utilizado no Modelo 3

| Coesão: 60 kPa | Ângulo de atrito: 48 | Módulo de deformabilidade do maciço: 220 MPa |

Material utilizado no Modelo 4

| Coesão: 90 kPa | Ângulo de atrito: 42 | Módulo de deformabilidade do maciço: 220 MPa |
5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0,003</td>
<td>-0,004</td>
<td>-0,004</td>
<td>-0,004</td>
<td>-0,004</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>-0,002</td>
<td>-0,001</td>
<td>-0,001</td>
<td>-0,001</td>
<td>-0,001</td>
</tr>
<tr>
<td>Corda 1-7</td>
<td>-0,004</td>
<td>-0,004</td>
<td>-0,003</td>
<td>-0,002</td>
<td>-0,003</td>
</tr>
<tr>
<td>REMQ</td>
<td>7,437E-04</td>
<td>7,775E-04</td>
<td>9,313E-04</td>
<td>8,260E-04</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>2,436E-01</td>
<td>2,768E-01</td>
<td>3,513E-01</td>
<td>3,251E-01</td>
<td></td>
</tr>
</tbody>
</table>

Figura 26. Comparação das convergências

Observação: Neste modelo utilizou-se uma combinação de 5 MPa para RCU e um GSI de 26. No primeiro modelo a maior diferença observada foi na primeira corda, com cerca de 4mm.

De modo diminuir a diferença da primeira corda procedeu-se a um aumento do Em na ordem dos 100MPa. A melhor correspondência deveu-se a este aumento de Em, que resultou numa diminuição da diferença de 4mm para 1mm na primeira corda.
Ficha de caracterização Pk 3+136 (TU)

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
</table>

Geologia:
- No topo: Tufos medianamente alterados (w3-4), com bombas vulcânicas de material resistente (basalto).
- A meio: Existência de água (humidade). Cinzas vulcânicas muito finas (argilosas) de cor vermelha (w4-5).
- Na base: Tufos com pequenos blocos de material basáltico com elevado grau de alteração (w4-5)

<table>
<thead>
<tr>
<th>Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 1 a 5 MPa</th>
<th>Intervalo de valores para GSI: 12 a 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de valores para coesão: 100 a 200 kPa</td>
<td>Intervalo de valores para ângulo de atrito: 15 a 25</td>
</tr>
</tbody>
</table>

2- Geometria

| Largura útil: 13,10m | Área útil: 81,50m² |
| Altura útil: 7,53m | Recobrimento: 15,00m |

Sustimento primário aplicado: Cambotas metálicas HEB180 afastadas 1m; rede electrossoldada AQ50; 0,10m de betão projetado.

Faseamento de escavação
3- Leituras em obra

Convergências

Figura 27. Gráfico das convergências (mm)

Figura 28. Deslocamentos verticais do alvo
4- Modelação

4.1 Malha e Geometria do Modelo

![Diagrama de malha e geometria do modelo](image)

4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Maciço - Inicial</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões 50% para zonas 1 e 2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustimento para zonas 1 e 2</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões a 50% para zona 3</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação da zona 3</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Alívio de tensões a 50% para zona 4</td>
</tr>
<tr>
<td>Stage 7</td>
<td>Escavação da zona 4</td>
</tr>
<tr>
<td>Stage 8</td>
<td>Alívio de tensões a 50% para zona 5</td>
</tr>
<tr>
<td>Stage 9</td>
<td>Escavação e aplicação do sustimento para a zona 5</td>
</tr>
<tr>
<td>Stage 10</td>
<td>Alívio de tensões a 50% para zona 6</td>
</tr>
<tr>
<td>Stage 11</td>
<td>Escavação e aplicação do sustimento para a zona 6</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 1: Tufo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 5MPa</td>
</tr>
<tr>
<td>GSI: 24</td>
</tr>
<tr>
<td>Coesão: 169,7kPa</td>
</tr>
<tr>
<td>Ângulo de atrito: 24,87</td>
</tr>
<tr>
<td>Módulo de deformabilidade do maciço: 84,78 MPa</td>
</tr>
<tr>
<td>Comportamento: Plástico</td>
</tr>
</tbody>
</table>

| Tufo: Alívio de tensões a 50% |
| Módulo de deformabilidade do maciço: 42,39 MPa |
| Comportamento: Elástico |
4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 150 kPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 45 kPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coesão: 70 kPa</td>
</tr>
</tbody>
</table>

5 - Resultados da modelação vs Resultados em obra

Marcas Superficiais

<table>
<thead>
<tr>
<th>Stage Number</th>
<th>Deslocamentos – Modelo 1</th>
<th>Deslocamento – Modelo 2</th>
<th>Deslocamento – Modelo 3</th>
<th>Deslocamento – Modelo 4</th>
<th>Datas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>14-Abr</td>
</tr>
<tr>
<td>2</td>
<td>0,0006</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>12-Mai</td>
</tr>
<tr>
<td>3</td>
<td>-0,0302</td>
<td>-0,029</td>
<td>-0,029</td>
<td>-0,030</td>
<td>19-Mai</td>
</tr>
<tr>
<td>4</td>
<td>-0,0280</td>
<td>-0,027</td>
<td>-0,027</td>
<td>-0,027</td>
<td>20-Mai</td>
</tr>
<tr>
<td>5</td>
<td>-0,0281</td>
<td>-0,027</td>
<td>-0,027</td>
<td>-0,028</td>
<td>22-Mai</td>
</tr>
<tr>
<td>6</td>
<td>-0,0262</td>
<td>-0,025</td>
<td>-0,025</td>
<td>-0,026</td>
<td>23-Mai</td>
</tr>
<tr>
<td>7</td>
<td>-0,0299</td>
<td>-0,026</td>
<td>-0,027</td>
<td>-0,027</td>
<td>29-Mai</td>
</tr>
<tr>
<td>8</td>
<td>-0,0312</td>
<td>-0,028</td>
<td>-0,029</td>
<td>-0,029</td>
<td>30-Mai</td>
</tr>
<tr>
<td>9</td>
<td>-0,0323</td>
<td>-0,029</td>
<td>-0,030</td>
<td>-0,031</td>
<td>31-Mai</td>
</tr>
<tr>
<td>10</td>
<td>-0,0339</td>
<td>-0,031</td>
<td>-0,032</td>
<td>-0,033</td>
<td>02-Jun</td>
</tr>
<tr>
<td>11</td>
<td>-0,0348</td>
<td>-0,032</td>
<td>-0,033</td>
<td>-0,034</td>
<td>06-Jun</td>
</tr>
</tbody>
</table>
Figura 29. Comparação dos deslocamentos verticais do alvo

Observação: Para todos os modelos efetuados apenas foi possível fazer corresponder o andamento inicial do gráfico dos deslocamentos caso se efetuasse um alívio de tensões na ordem dos 90% antes da escavação das zonas 1 e 2.

No entanto um alívio dessa magnitude revelou em todos os casos um aumento de cerca de 5mm no valor final do deslocamento.

De salientar que para um aumento ou diminuição do valor de Em utilizado no modelo, o andamento final do gráfico exibia valores superiores ou inferiores aos apresentados.

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0,007</td>
<td>-0,008</td>
<td>-0,007</td>
<td>-0,007</td>
<td>-0,007</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>-0,004</td>
<td>-0,009</td>
<td>-0,007</td>
<td>-0,007</td>
<td>-0,008</td>
</tr>
<tr>
<td>Corda 1-7</td>
<td>-0,009</td>
<td>-0,002</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,003</td>
</tr>
<tr>
<td>Corda 6-7</td>
<td>-0,008</td>
<td>-0,008</td>
<td>-0,006</td>
<td>-0,007</td>
<td>-0,008</td>
</tr>
<tr>
<td>Corda1-6</td>
<td>-0,004</td>
<td>-0,001</td>
<td>-0,002</td>
<td>-0,001</td>
<td>-0,001</td>
</tr>
<tr>
<td>REMQ</td>
<td>3,919E-03</td>
<td>3,427E-03</td>
<td>3,542E-03</td>
<td>3,466E-03</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>5,554E-01</td>
<td>4,888E-01</td>
<td>4,868E-01</td>
<td>4,710E-01</td>
<td></td>
</tr>
</tbody>
</table>
Observação: Para esta secção utilizou-se variadíssimas combinações que combinavam o valor do GSI com uma variação da RCU desde os 3MPa até aos 5MPa. Para além de variadíssimas combinações, utilizou-se vários materiais, como brechas, basaltos e tufos.

O modelo que melhores resultados apresentou, acabou por ser constituído por tufos com uma combinação de 5MPa para a RCU e um GSI de 24.

O número elevado de combinações tentadas deveu-se ao facto de ser necessário obter a melhor correspondência não só a nível de convergências como de deslocamentos verticais.
Túnel do Cortado

Ficha de caracterização - Troço abandonado – Pk 0+246 T2F1a

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
</table>

Geologia: o material basáltico apresenta elevado grau de fracturação e alteração.

Possivel observar o estado de alteração das diáclases que se apresentam abertas com paredes muito alteradas e preenchimento mole.

A presença de humidade nesta zona também contribui para a redução das características geológico-geotécnicas (W4/F4-5) do maciço

<table>
<thead>
<tr>
<th>Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 5 a 25 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de valores para GSI: 17 a 27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intervalo de valores para coesão: <100 kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervalo de valores para ângulo de atrito: <15</td>
</tr>
</tbody>
</table>

2- Geometria

<table>
<thead>
<tr>
<th>Largura útil: 13,10m</th>
<th>Área útil: 81,50m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura útil: 7,43m</td>
<td>Recobrimento:27,00m</td>
</tr>
</tbody>
</table>

Sustentamento primário aplicado: Cambotas metálicas HEB180 afastadas 1m; rede electrossoldada AQ50; 0,10m de betão projetado.

Faseamento de escavação
3- Leituras em obra

Convergências

Figura 31. Gráfico das convergências (mm)

4- Modelação

4.1 Malha e Geometria do Modelo
4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Maciço - Inicial</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões 50% para zonas 1 e 2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustimento para zonas 1 e 2</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões a 50% para zona 3</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação da zona 3</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Alívio de tensões a 50% para zona 4</td>
</tr>
<tr>
<td>Stage 7</td>
<td>Escavação da zona 4</td>
</tr>
<tr>
<td>Stage 8</td>
<td>Alívio de tensões a 50% para zona 5</td>
</tr>
<tr>
<td>Stage 9</td>
<td>Escavação e aplicação do sustimento para a zona 5</td>
</tr>
<tr>
<td>Stage 10</td>
<td>Alívio de tensões a 50% para zona 6</td>
</tr>
<tr>
<td>Stage 11</td>
<td>Escavação e aplicação do sustimento para a zona 6</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

<table>
<thead>
<tr>
<th>Material utilizado no Modelo 1: Basalto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência do material rochoso intacto à compressão uniaxial: 5MPa</td>
</tr>
</tbody>
</table>

| Basalto: Alívio de tensões a 30% | Módulo de deformabilidade do maciço: 44,6 MPa | Comportamento: Elástico |

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

Material utilizado no Modelo 2

| Coesão: 110 kPa | Ângulo de atrito: 28 | Módulo de deformabilidade do maciço: 89 MPa |

Material utilizado no Modelo 3

| Coesão: 50 kPa | Ângulo de atrito: 45 | Módulo de deformabilidade do maciço: 89 MPa |

Material utilizado no Modelo 4

| Coesão: 80 kPa | Ângulo de atrito: 36 | Módulo de deformabilidade do maciço: 89 MPa |

5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0,027</td>
<td>-0,019</td>
<td>-0,025</td>
<td>-0,017</td>
<td>-0,020</td>
</tr>
</tbody>
</table>
Figura 32. Comparação das convergências

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-5</td>
<td>0,002</td>
<td>-0,022</td>
<td>-0,027</td>
<td>-0,019</td>
</tr>
<tr>
<td>Corda 1-7</td>
<td>-0,016</td>
<td>-0,016</td>
<td>-0,024</td>
<td>-0,015</td>
</tr>
<tr>
<td>Corda 1-6</td>
<td>-0,026</td>
<td>-0,027</td>
<td>-0,046</td>
<td>-0,024</td>
</tr>
<tr>
<td>Corda 4-5</td>
<td>0,007</td>
<td>-0,084</td>
<td>-0,107</td>
<td>-0,076</td>
</tr>
<tr>
<td>Corda 6-7</td>
<td>-0,003</td>
<td>-0,032</td>
<td>-0,044</td>
<td>-0,031</td>
</tr>
<tr>
<td>REMQ</td>
<td>4,058E-02</td>
<td>5,169E-02</td>
<td>3,683E-02</td>
<td>4,212E-02</td>
</tr>
<tr>
<td>EMP</td>
<td>5,995E+00</td>
<td>7,738E+00</td>
<td>5,374E+00</td>
<td>6,267E+00</td>
</tr>
</tbody>
</table>

Observação: Para esta secção utilizou-se a combinação mínima de RCU e de GSI de maneira a tentar respeitar novamente os limites dos parâmetros de resistência indicados na cartografia de obra.

Embora fossem efetuadas várias tentativas, em todos os modelos foi possível observar uma enorme discrepância nas cordas 1-5, 4-5 e 6-7, que revelou-se impossível de eliminar. Como tal, procurou-se obter a melhor correspondência nas restantes cordas, que foi conseguida através de um ajuste no mi do material utilizado nas primeiras modelações.
Ficha de caracterização - Troço abandonado – Pk 0+250 T2F1a

1- Caracterização Geotécnica

<table>
<thead>
<tr>
<th>Zona Geotécnica: ZG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geologia: o material basáltico apresenta elevado grau de fracturação e alteração.</td>
</tr>
<tr>
<td>Possível observar o estado de alteração das diáclases que se apresentam abertas com paredes muito alteradas e preenchimento mole.</td>
</tr>
<tr>
<td>A presença de humidade nesta zona também contribui para a redução das características geológico-geotécnicas (W4/F4-5) do maciço</td>
</tr>
</tbody>
</table>

| Intervalo para valores da resistência do material rochoso intacto à compressão uniaxial: 5 a 25 MPa | Intervalo de valores para GSI: 17 a 27 |
| Intervalo de valores para coesão: 100 a 200 kPa | Intervalo de valores para ângulo de atrito: 15 a 25 |

2- Geometria

<table>
<thead>
<tr>
<th>Largura útil: 13,10m</th>
<th>Área útil: 81,50m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura útil: 7,43m</td>
<td>Recobrimento: 27,00m</td>
</tr>
</tbody>
</table>

Sustimento primário aplicado: Cambotas metálicas HEB180 afastadas 1m; rede electrossoldada AQ50; 0,10m de betão projetado.

Faseamento de escavação
3- Leituras em obra

Convergências

Figura 33. Gráfico das convergências (mm)

![Gráfico das convergências](image)

4- Modelação

4.1 Malha e Geometria do Modelo

![Modelagem](image)
4.2 Stages utilizadas

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Maciço - Inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 2</td>
<td>Alívio de tensões 50% para zonas 1 e 2</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Escavação e aplicação do sustimento para zonas 1 e 2</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Alívio de tensões a 50% para zona 3</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Escavação da zona 3</td>
</tr>
<tr>
<td>Stage 6</td>
<td>Alívio de tensões a 50% para zona 4</td>
</tr>
<tr>
<td>Stage 7</td>
<td>Escavação da zona 4</td>
</tr>
<tr>
<td>Stage 8</td>
<td>Alívio de tensões a 50% para zona 5</td>
</tr>
<tr>
<td>Stage 9</td>
<td>Escavação e aplicação do sustimento para a zona 5</td>
</tr>
<tr>
<td>Stage 10</td>
<td>Alívio de tensões a 50% para zona 6</td>
</tr>
<tr>
<td>Stage 11</td>
<td>Escavação e aplicação do sustimento para a zona 6</td>
</tr>
</tbody>
</table>

4.3 Materiais utilizados

Material utilizado no Modelo 1: Basalto

| Resistência do material rochoso intacto à compressão uniaxial: 6 MPa | GSI: 18 | Coesão: 238 kPa | Ângulo de atrito: 30,17 | Módulo de deformabilidade do maciço: 500 MPa | Comportamento: Plástico |

| Basalto: Alívio de tensões a 30% | Módulo de deformabilidade do maciço: 250 MPa | Comportamento: Elástico |

4.4 Materiais utilizados tendo em consideração os valores de (Lourenço, et al., 2010)

Material utilizado no Modelo 2

| Coesão: 240 kPa | Ângulo de atrito: 39 | Módulo de deformabilidade do maciço: 89 MPa |

Material utilizado no Modelo 3

| Coesão: 80 kPa | Ângulo de atrito: 55 | Módulo de deformabilidade do maciço: 89 MPa |

Material utilizado no Modelo 4

| Coesão: 130 kPa | Ângulo de atrito: 46 | Módulo de deformabilidade do maciço: 89 MPa |
5- Resultados da modelação vs Resultados em obra

Convergências

<table>
<thead>
<tr>
<th>Cordas</th>
<th>Obra (m)</th>
<th>Modelo 1 (m)</th>
<th>Modelo 2 (m)</th>
<th>Modelo 3 (m)</th>
<th>Modelo 4 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corda 1-4</td>
<td>-0,002</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,003</td>
</tr>
<tr>
<td>Corda 1-5</td>
<td>-0,004</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,003</td>
<td>-0,003</td>
</tr>
<tr>
<td>Corda 1-6</td>
<td>-0,003</td>
<td>-0,002</td>
<td>0,000</td>
<td>-0,001</td>
<td>-0,001</td>
</tr>
<tr>
<td>Corda 1-7</td>
<td>-0,003</td>
<td>-0,004</td>
<td>-0,002</td>
<td>-0,002</td>
<td>-0,002</td>
</tr>
<tr>
<td>Corda 2-5</td>
<td>0,000</td>
<td>-0,012</td>
<td>-0,012</td>
<td>-0,012</td>
<td>-0,012</td>
</tr>
<tr>
<td>Corda 6-7</td>
<td>0,001</td>
<td>-0,005</td>
<td>-0,003</td>
<td>-0,004</td>
<td>-0,004</td>
</tr>
<tr>
<td>REMQ</td>
<td>6,303E-03</td>
<td>6,305E-03</td>
<td>6,272E-03</td>
<td>6,257E-03</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>7,905E+00</td>
<td>7,445E+00</td>
<td>7,477E+00</td>
<td>7,536E+00</td>
<td></td>
</tr>
</tbody>
</table>

Figura 34. Comparação das convergências

Observação: À semelhança da secção anterior utilizou-se uma combinação composta pelos valores mínimos de RCU e GSI de modo a respeitar os parâmetros de resistência estimados pela cartografia.

Novamente, três das cordas da secção exibiram convergências muito superiores às observadas em obra, sendo que nos primeiros modelos chegou-se a obter diferenças na ordem dos 30mm.

Um ajuste da combinação de RCU e GSI para valores superiores (6MPa e 18) revelou um melhoramento nas convergências, embora tenha sido necessário recorrer a um aumento de 400MPa no Em por forma a obter uma melhor aproximação entre valores.

No entanto, a corda 4-5 manteve uma diferença muito superior à obtida em obra, na ordem dos 12mm.